Towards Clinical Prediction with Transparency: An Explainable AI Approach to Survival Modelling in Residential Aged Care

1 Dec 2023  ·  Teo Susnjak, Elise Griffin ·

Background: Accurate survival time estimates aid end-of-life medical decision-making. Objectives: Develop an interpretable survival model for elderly residential aged care residents using advanced machine learning. Setting: A major Australasian residential aged care provider. Participants: Residents aged 65+ admitted for long-term care from July 2017 to August 2023. Sample size: 11,944 residents across 40 facilities. Predictors: Factors include age, gender, health status, co-morbidities, cognitive function, mood, nutrition, mobility, smoking, sleep, skin integrity, and continence. Outcome: Probability of survival post-admission, specifically calibrated for 6-month survival estimates. Statistical Analysis: Tested CoxPH, EN, RR, Lasso, GB, XGB, and RF models in 20 experiments with a 90/10 train/test split. Evaluated accuracy using C-index, Harrell's C-index, dynamic AUROC, IBS, and calibrated ROC. Chose XGB for its performance and calibrated it for 1, 3, 6, and 12-month predictions using Platt scaling. Employed SHAP values to analyze predictor impacts. Results: GB, XGB, and RF models showed the highest C-Index values (0.714, 0.712, 0.712). The optimal XGB model demonstrated a 6-month survival prediction AUROC of 0.746 (95% CI 0.744-0.749). Key mortality predictors include age, male gender, mobility, health status, pressure ulcer risk, and appetite. Conclusions: The study successfully applies machine learning to create a survival model for aged care, aligning with clinical insights on mortality risk factors and enhancing model interpretability and clinical utility through explainable AI.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods