Towards Consistent Stochastic Human Motion Prediction via Motion Diffusion

21 May 2023  ·  Jiarui Sun, Girish Chowdhary ·

Stochastic Human Motion Prediction (HMP) aims to predict multiple possible upcoming pose sequences based on past human motion trajectories. Although previous approaches have shown impressive performance, they face several issues, including complex training processes and a tendency to generate predictions that are often inconsistent with the provided history, and sometimes even becoming entirely unreasonable. To overcome these issues, we propose DiffMotion, an end-to-end diffusion-based stochastic HMP framework. DiffMotion's motion predictor is composed of two modules, including (1) a Transformer-based network for initial motion reconstruction from corrupted motion, and (2) a Graph Convolutional Network (GCN) to refine the generated motion considering past observations. Our method, facilitated by this novel Transformer-GCN module design and a proposed variance scheduler, excels in predicting accurate, realistic, and consistent motions, while maintaining an appropriate level of diversity. Our results on benchmark datasets show that DiffMotion significantly outperforms previous methods in terms of both accuracy and fidelity, while demonstrating superior robustness.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here