Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes

4 Mar 2023  ·  Fan Wu, Zhanhong Cheng, Huiyu Chen, Tony Z. Qiu, Lijun Sun ·

Accurately monitoring road traffic state is crucial for various applications, including travel time prediction, traffic control, and traffic safety. However, the lack of sensors often results in incomplete traffic state data, making it challenging to obtain reliable information for decision-making. This paper proposes a novel method for imputing traffic state data using Gaussian processes (GP) to address this issue. We propose a kernel rotation re-parametrization scheme that transforms a standard isotropic GP kernel into an anisotropic kernel, which can better model the congestion propagation in traffic flow data. The model parameters can be estimated by statistical inference using data from sparse probe vehicles or loop detectors. Moreover, the rotated GP method provides statistical uncertainty quantification for the imputed traffic state, making it more reliable. We also extend our approach to a multi-output GP, which allows for simultaneously estimating the traffic state for multiple lanes. We evaluate our method using real-world traffic data from the Next Generation simulation (NGSIM) and HighD programs, along with simulated data representing a traffic bottleneck scenario. Considering current and future mixed traffic of connected vehicles (CVs) and human-driven vehicles (HVs), we experiment with the traffic state estimation (TSE) scheme from 5% to 50% available trajectories, mimicking different CV penetration rates in a mixed traffic environment. We also test the traffic state estimation when traffic flow information is obtained from loop detectors. The results demonstrate the adaptability of our TSE method across different CV penetration rates and types of detectors, achieving state-of-the-art accuracy in scenarios with sparse observation rates.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods