Tuning the feedback controller gains is a simple way to improve autonomous driving performance

7 Feb 2024  ·  Wenyu Liang, Pablo R. Baldivieso, Ross Drummond, Donghwan Shin ·

Typical autonomous driving systems are a combination of machine learning algorithms (often involving neural networks) and classical feedback controllers. Whilst significant progress has been made in recent years on the neural network side of these systems, only limited progress has been made on the feedback controller side. Often, the feedback control gains are simply passed from paper to paper with little re-tuning taking place, even though the changes to the neural networks can alter the vehicle's closed loop dynamics. The aim of this paper is to highlight the limitations of this approach; it is shown that re-tuning the feedback controller can be a simple way to improve autonomous driving performance. To demonstrate this, the PID gains of the longitudinal controller in the TCP autonomous vehicle algorithm are tuned. This causes the driving score in CARLA to increase from 73.21 to 77.38, with the results averaged over 16 driving scenarios. Moreover, it was observed that the performance benefits were most apparent during challenging driving scenarios, such as during rain or night time, as the tuned controller led to a more assertive driving style. These results demonstrate the value of developing both the neural network and feedback control policies of autonomous driving systems simultaneously, as this can be a simple and methodical way to improve autonomous driving system performance and robustness.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods