Two to Five Truths in Non-Negative Matrix Factorization

In this paper, we explore the role of matrix scaling on a matrix of counts when building a topic model using non-negative matrix factorization. We present a scaling inspired by the normalized Laplacian (NL) for graphs that can greatly improve the quality of a non-negative matrix factorization. The results parallel those in the spectral graph clustering work of \cite{Priebe:2019}, where the authors proved adjacency spectral embedding (ASE) spectral clustering was more likely to discover core-periphery partitions and Laplacian Spectral Embedding (LSE) was more likely to discover affinity partitions. In text analysis non-negative matrix factorization (NMF) is typically used on a matrix of co-occurrence ``contexts'' and ``terms" counts. The matrix scaling inspired by LSE gives significant improvement for text topic models in a variety of datasets. We illustrate the dramatic difference a matrix scalings in NMF can greatly improve the quality of a topic model on three datasets where human annotation is available. Using the adjusted Rand index (ARI), a measure cluster similarity we see an increase of 50\% for Twitter data and over 200\% for a newsgroup dataset versus using counts, which is the analogue of ASE. For clean data, such as those from the Document Understanding Conference, NL gives over 40\% improvement over ASE. We conclude with some analysis of this phenomenon and some connections of this scaling with other matrix scaling methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods