Video Instance Segmentation in an Open-World

Existing video instance segmentation (VIS) approaches generally follow a closed-world assumption, where only seen category instances are identified and spatio-temporally segmented at inference. Open-world formulation relaxes the close-world static-learning assumption as follows: (a) first, it distinguishes a set of known categories as well as labels an unknown object as `unknown' and then (b) it incrementally learns the class of an unknown as and when the corresponding semantic labels become available. We propose the first open-world VIS approach, named OW-VISFormer, that introduces a novel feature enrichment mechanism and a spatio-temporal objectness (STO) module. The feature enrichment mechanism based on a light-weight auxiliary network aims at accurate pixel-level (unknown) object delineation from the background as well as distinguishing category-specific known semantic classes. The STO module strives to generate instance-level pseudo-labels by enhancing the foreground activations through a contrastive loss. Moreover, we also introduce an extensive experimental protocol to measure the characteristics of OW-VIS. Our OW-VISFormer performs favorably against a solid baseline in OW-VIS setting. Further, we evaluate our contributions in the standard fully-supervised VIS setting by integrating them into the recent SeqFormer, achieving an absolute gain of 1.6\% AP on Youtube-VIS 2019 val. set. Lastly, we show the generalizability of our contributions for the open-world detection (OWOD) setting, outperforming the best existing OWOD method in the literature. Code, models along with OW-VIS splits are available at \url{https://github.com/OmkarThawakar/OWVISFormer}.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here