Video Segmentation With Just a Few Strokes

As the use of videos is becoming more popular in computer vision, the need for annotated video datasets increases. Such datasets are required either as training data or simply as ground truth for benchmark datasets. A particular challenge in video segmentation is due to disocclusions, which hamper frame-to-frame propagation, in conjunction with non-moving objects. We show that a combination of motion from point trajectories, as known from motion segmentation, along with minimal supervision can largely help solve this problem. Moreover, we integrate a new constraint that enforces consistency of the color distribution in successive frames. We quantify user interaction effort with respect to segmentation quality on challenging ego motion videos. We compare our approach to a diverse set of algorithms in terms of user effort and in terms of performance on common video segmentation benchmarks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here