Webly Supervised Semantic Segmentation

CVPR 2017 Bin JinMaria V. Ortiz SegoviaSabine Susstrunk

We propose a weakly supervised semantic segmentation algorithm that uses image tags for supervision. We apply the tags in queries to collect three sets of web images, which encode the clean foregrounds, the common back- grounds, and realistic scenes of the classes... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet