World Knowledge in Multiple Choice Reading Comprehension

13 Nov 2022  ·  Adian Liusie, Vatsal Raina, Mark Gales ·

Recently it has been shown that without any access to the contextual passage, multiple choice reading comprehension (MCRC) systems are able to answer questions significantly better than random on average. These systems use their accumulated "world knowledge" to directly answer questions, rather than using information from the passage. This paper examines the possibility of exploiting this observation as a tool for test designers to ensure that the use of "world knowledge" is acceptable for a particular set of questions. We propose information-theory based metrics that enable the level of "world knowledge" exploited by systems to be assessed. Two metrics are described: the expected number of options, which measures whether a passage-free system can identify the answer a question using world knowledge; and the contextual mutual information, which measures the importance of context for a given question. We demonstrate that questions with low expected number of options, and hence answerable by the shortcut system, are often similarly answerable by humans without context. This highlights that the general knowledge 'shortcuts' could be equally used by exam candidates, and that our proposed metrics may be helpful for future test designers to monitor the quality of questions.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.