Zero-Shot Fine-Grained Style Transfer: Leveraging Distributed Continuous Style Representations to Transfer To Unseen Styles

10 Nov 2019  ·  Eric Michael Smith, Diana Gonzalez-Rico, Emily Dinan, Y-Lan Boureau ·

Text style transfer is usually performed using attributes that can take a handful of discrete values (e.g., positive to negative reviews). In this work, we introduce an architecture that can leverage pre-trained consistent continuous distributed style representations and use them to transfer to an attribute unseen during training, without requiring any re-tuning of the style transfer model... We demonstrate the method by training an architecture to transfer text conveying one sentiment to another sentiment, using a fine-grained set of over 20 sentiment labels rather than the binary positive/negative often used in style transfer. Our experiments show that this model can then rewrite text to match a target sentiment that was unseen during training. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here