1 code implementation • 21 Mar 2023 • Bowei He, Xu He, Yingxue Zhang, Ruiming Tang, Chen Ma
Personalized recommender systems have been widely studied and deployed to reduce information overload and satisfy users' diverse needs.
1 code implementation • 4 Mar 2023 • Wei Guo, Chang Meng, Enming Yuan, ZhiCheng He, Huifeng Guo, Yingxue Zhang, Bo Chen, Yaochen Hu, Ruiming Tang, Xiu Li, Rui Zhang
However, it is challenging to explore multi-behavior data due to the unbalanced data distribution and sparse target behavior, which lead to the inadequate modeling of high-order relations when treating multi-behavior data ''as features'' and gradient conflict in multitask learning when treating multi-behavior data ''as labels''.
no code implementations • 1 Mar 2023 • Xu Chen, Jingsen Zhang, Lei Wang, Quanyu Dai, Zhenhua Dong, Ruiming Tang, Rui Zhang, Li Chen, Ji-Rong Wen
To alleviate the above problems, we propose to build an explainable recommendation dataset with multi-aspect real user labeled ground truths.
no code implementations • 22 Feb 2023 • ZhiCheng He, Weiwen Liu, Wei Guo, Jiarui Qin, Yingxue Zhang, Yaochen Hu, Ruiming Tang
Besides, we elaborate on the industrial practices of UBM methods with the hope of providing insights into the application value of existing UBM solutions.
no code implementations • 7 Feb 2023 • Yuhao Wang, Ha Tsz Lam, Yi Wong, Ziru Liu, Xiangyu Zhao, Yichao Wang, Bo Chen, Huifeng Guo, Ruiming Tang
Multi-task learning (MTL) aims at learning related tasks in a unified model to achieve mutual improvement among tasks considering their shared knowledge.
no code implementations • 12 Dec 2022 • Shiwei Li, Huifeng Guo, Lu Hou, Wei zhang, Xing Tang, Ruiming Tang, Rui Zhang, Ruixuan Li
To this end, we formulate a novel quantization training paradigm to compress the embeddings from the training stage, termed low-precision training (LPT).
1 code implementation • 17 Nov 2022 • Yunjia Xi, Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Rui Zhang, Ruiming Tang, Yong Yu
Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists.
no code implementations • 11 Nov 2022 • Haolun Wu, Yingxue Zhang, Chen Ma, Wei Guo, Ruiming Tang, Xue Liu, Mark Coates
To offer accurate and diverse recommendation services, recent methods use auxiliary information to foster the learning process of user and item representations.
1 code implementation • 26 Oct 2022 • Hengyu Zhang, Enming Yuan, Wei Guo, ZhiCheng He, Jiarui Qin, Huifeng Guo, Bo Chen, Xiu Li, Ruiming Tang
Sequential recommendation (SR) plays an important role in personalized recommender systems because it captures dynamic and diverse preferences from users' real-time increasing behaviors.
1 code implementation • 18 Oct 2022 • Xiangyang Li, Bo Chen, Huifeng Guo, Jingjie Li, Chenxu Zhu, Xiang Long, Sujian Li, Yichao Wang, Wei Guo, Longxia Mao, JinXing Liu, Zhenhua Dong, Ruiming Tang
FE-Block module performs fine-grained and early feature interactions to capture the interactive signals between user and item towers explicitly and CIR module leverages a contrastive interaction regularization to further enhance the interactions implicitly.
no code implementations • 5 Sep 2022 • Zhenhua Dong, Zhe Wang, Jun Xu, Ruiming Tang, JiRong Wen
Soon after the invention of the Internet, the recommender system emerged and related technologies have been extensively studied and applied by both academia and industry.
no code implementations • 11 Aug 2022 • Yuxiang Shi, Yue Ding, Bo Chen, YuYang Huang, Ruiming Tang, Dong Wang
In this paper, we propose a Task aligned Meta-learning based Augmented Graph (TMAG) to address cold-start recommendation.
1 code implementation • 9 Aug 2022 • Fuyuan Lyu, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming Tang, Xue Liu
To this end, we propose an optimal embedding table learning framework OptEmbed, which provides a practical and general method to find an optimal embedding table for various base CTR models.
no code implementations • 3 Aug 2022 • Chang Meng, Ziqi Zhao, Wei Guo, Yingxue Zhang, Haolun Wu, Chen Gao, Dong Li, Xiu Li, Ruiming Tang
More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors.
1 code implementation • 2 Aug 2022 • Haolun Wu, Chen Ma, Yingxue Zhang, Xue Liu, Ruiming Tang, Mark Coates
In order to effectively utilize such information, most research adopts the pairwise ranking method on constructed training triplets (user, positive item, negative item) and aims to distinguish between positive items and negative items for each user.
1 code implementation • 17 Jun 2022 • Lingyue Fu, Jianghao Lin, Weiwen Liu, Ruiming Tang, Weinan Zhang, Rui Zhang, Yong Yu
However, with the development of user interface (UI) design, the layout of displayed items on a result page tends to be multi-block (i. e., multi-list) style instead of a single list, which requires different assumptions to model user behaviors more accurately.
1 code implementation • Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval 2021 • Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Shuai Li, Ruiming Tang, Xiuqiang He, Jianye Hao, Yong Yu
To better exploit search logs and model users' behavior patterns, numerous click models are proposed to extract users' implicit interaction feedback.
no code implementations • 5 Jun 2022 • Yankai Chen, Huifeng Guo, Yingxue Zhang, Chen Ma, Ruiming Tang, Jingjie Li, Irwin King
Learning vectorized embeddings is at the core of various recommender systems for user-item matching.
1 code implementation • 26 Apr 2022 • Qi Wan, Xiangnan He, Xiang Wang, Jiancan Wu, Wei Guo, Ruiming Tang
In this work, we develop a new learning paradigm named Cross Pairwise Ranking (CPR) that achieves unbiased recommendation without knowing the exposure mechanism.
no code implementations • 24 Apr 2022 • Guohao Cai, Jieming Zhu, Quanyu Dai, Zhenhua Dong, Xiuqiang He, Ruiming Tang, Rui Zhang
Deep learning-based recommendation has become a widely adopted technique in various online applications.
1 code implementation • 20 Apr 2022 • Yunjia Xi, Weiwen Liu, Jieming Zhu, Xilong Zhao, Xinyi Dai, Ruiming Tang, Weinan Zhang, Rui Zhang, Yong Yu
MIR combines low-level cross-item interaction and high-level set-to-list interaction, where we view the candidate items to be reranked as a set and the users' behavior history in chronological order as a list.
no code implementations • 4 Apr 2022 • Bo Chen, Xiangyu Zhao, Yejing Wang, Wenqi Fan, Huifeng Guo, Ruiming Tang
Deep recommender systems (DRS) are critical for current commercial online service providers, which address the issue of information overload by recommending items that are tailored to the user's interests and preferences.
no code implementations • 23 Mar 2022 • Yi Li, Jieming Zhu, Weiwen Liu, Liangcai Su, Guohao Cai, Qi Zhang, Ruiming Tang, Xi Xiao, Xiuqiang He
Specifically, PEAR not only captures feature-level and item-level interactions, but also models item contexts from both the initial ranking list and the historical clicked item list.
1 code implementation • 14 Feb 2022 • Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang, Ruiming Tang
As the final stage of the multi-stage recommender system (MRS), re-ranking directly affects user experience and satisfaction by rearranging the input ranking lists, and thereby plays a critical role in MRS. With the advances in deep learning, neural re-ranking has become a trending topic and been widely applied in industrial applications.
1 code implementation • 27 Jan 2022 • Weijun Hong, Guilin Li, Weinan Zhang, Ruiming Tang, Yunhe Wang, Zhenguo Li, Yong Yu
Neural architecture search (NAS) has shown encouraging results in automating the architecture design.
no code implementations • 3 Dec 2021 • Yankai Chen, Yifei Zhang, Yingxue Zhang, Huifeng Guo, Jingjie Li, Ruiming Tang, Xiuqiang He, Irwin King
In this work, we study the problem of representation learning for recommendation with 1-bit quantization.
no code implementations • 30 Nov 2021 • Wei Guo, Can Zhang, ZhiCheng He, Jiarui Qin, Huifeng Guo, Bo Chen, Ruiming Tang, Xiuqiang He, Rui Zhang
With the help of two novel CNN-based multi-interest extractors, self-supervision signals are discovered with full considerations of different interest representations (point-wise and union-wise), interest dependencies (short-range and long-range), and interest correlations (inter-item and intra-item).
1 code implementation • NeurIPS 2021 • Hang Lai, Jian Shen, Weinan Zhang, Yimin Huang, Xing Zhang, Ruiming Tang, Yong Yu, Zhenguo Li
Model-based reinforcement learning has attracted wide attention due to its superior sample efficiency.
no code implementations • 16 Nov 2021 • Handong Ma, Jiawei Hou, Chenxu Zhu, Weinan Zhang, Ruiming Tang, Jincai Lai, Jieming Zhu, Xiuqiang He, Yong Yu
Pseudo relevance feedback (PRF) automatically performs query expansion based on top-retrieved documents to better represent the user's information need so as to improve the search results.
1 code implementation • 5 Nov 2021 • Chenxu Zhu, Bo Chen, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo Li, Yong Yu
To address these three issues mentioned above, we propose Automatic Interaction Machine (AIM) with three core components, namely, Feature Interaction Search (FIS), Interaction Function Search (IFS) and Embedding Dimension Search (EDS), to select significant feature interactions, appropriate interaction functions and necessary embedding dimensions automatically in a unified framework.
1 code implementation • Proceedings of the 30th ACM International Conference on Information & Knowledge Management 2021 • Bo Chen, Yichao Wang, Zhirong Liu, Ruiming Tang, Wei Guo, Hongkun Zheng, Weiwei Yao, Muyu Zhang, Xiuqiang He
The state-of-the-art deep CTR models with parallel structure (e. g., DCN) learn explicit and implicit feature interactions through independent parallel networks.
no code implementations • 25 Oct 2021 • Yong Gao, Huifeng Guo, Dandan Lin, Yingxue Zhang, Ruiming Tang, Xiuqiang He
It is compatible with existing GNN-based approaches for news recommendation and can capture both collaborative and content filtering information simultaneously.
no code implementations • 18 Oct 2021 • Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Weinan Zhang, Qing Liu, Xiuqiang He, Yong Yu
As a critical task for large-scale commercial recommender systems, reranking has shown the potential of improving recommendation results by uncovering mutual influence among items.
no code implementations • 28 Sep 2021 • Yunzhe Li, Yue Ding, Bo Chen, Xin Xin, Yule Wang, Yuxiang Shi, Ruiming Tang, Dong Wang
In this paper, we propose a novel time-aware sequential recommendation framework called Social Temporal Excitation Networks (STEN), which introduces temporal point processes to model the fine-grained impact of friends' behaviors on the user s dynamic interests in an event-level direct paradigm.
1 code implementation • 11 Aug 2021 • Jiarui Qin, Weinan Zhang, Rong Su, Zhirong Liu, Weiwen Liu, Ruiming Tang, Xiuqiang He, Yong Yu
Prediction over tabular data is an essential task in many data science applications such as recommender systems, online advertising, medical treatment, etc.
1 code implementation • 3 Aug 2021 • Fuyuan Lyu, Xing Tang, Huifeng Guo, Ruiming Tang, Xiuqiang He, Rui Zhang, Xue Liu
As feature interactions bring in non-linearity, they are widely adopted to improve the performance of CTR prediction models.
Ranked #2 on
Click-Through Rate Prediction
on Avazu
no code implementations • 25 Jun 2021 • Weiwen Liu, Feng Liu, Ruiming Tang, Ben Liao, Guangyong Chen, Pheng Ann Heng
Fairness in recommendation has attracted increasing attention due to bias and discrimination possibly caused by traditional recommenders.
no code implementations • 9 Jun 2021 • Xiangli Yang, Qing Liu, Rong Su, Ruiming Tang, Zhirong Liu, Xiuqiang He
The field-wise transfer policy decides how the pre-trained embedding representations are frozen or fine-tuned based on the given instance from the target domain.
no code implementations • 1 Jun 2021 • Wei Guo, Rong Su, Renhao Tan, Huifeng Guo, Yingxue Zhang, Zhirong Liu, Ruiming Tang, Xiuqiang He
To solve these problems, we propose a novel module named Dual Graph enhanced Embedding, which is compatible with various CTR prediction models to alleviate these two problems.
no code implementations • 21 Apr 2021 • Weinan Zhang, Jiarui Qin, Wei Guo, Ruiming Tang, Xiuqiang He
In this survey, we provide a comprehensive review of deep learning models for CTR estimation tasks.
1 code implementation • 17 Apr 2021 • Huifeng Guo, Wei Guo, Yong Gao, Ruiming Tang, Xiuqiang He, Wenzhi Liu
Different from the models with dense training data, the training data for CTR models is usually high-dimensional and sparse.
1 code implementation • 13 Apr 2021 • Xinyi Dai, Jianghao Lin, Weinan Zhang, Shuai Li, Weiwen Liu, Ruiming Tang, Xiuqiang He, Jianye Hao, Jun Wang, Yong Yu
Modern information retrieval systems, including web search, ads placement, and recommender systems, typically rely on learning from user feedback.
no code implementations • 13 Jan 2021 • Chen Ma, Liheng Ma, Yingxue Zhang, Ruiming Tang, Xue Liu, Mark Coates
Personalized recommender systems are playing an increasingly important role as more content and services become available and users struggle to identify what might interest them.
1 code implementation • 16 Dec 2020 • Huifeng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, Xiuqiang He
In this paper, we propose a novel embedding learning framework for numerical features in CTR prediction (AutoDis) with high model capacity, end-to-end training and unique representation properties preserved.
no code implementations • 1 Nov 2020 • Xinyi Dai, Jiawei Hou, Qing Liu, Yunjia Xi, Ruiming Tang, Weinan Zhang, Xiuqiang He, Jun Wang, Yong Yu
To this end, we propose a novel ranking framework called U-rank that directly optimizes the expected utility of the ranking list.
no code implementations • 4 Sep 2020 • Yichao Wang, Huifeng Guo, Ruiming Tang, Zhirong Liu, Xiuqiang He
Deep learning models in recommender systems are usually trained in the batch mode, namely iteratively trained on a fixed-size window of training data.
no code implementations • 26 Aug 2020 • Kelong Mao, Xi Xiao, Jieming Zhu, Biao Lu, Ruiming Tang, Xiuqiang He
In this work, we propose to formulate item tagging as a link prediction problem between item nodes and tag nodes.
no code implementations • 25 Aug 2020 • Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Mark Coates
We develop a Graph Structure Aware Incremental Learning framework, GraphSAIL, to address the commonly experienced catastrophic forgetting problem that occurs when training a model in an incremental fashion.
1 code implementation • Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2020 • Jianing Sun, Wei Guo, Dengcheng Zhang, Yingxue Zhang, Florence Regol, Yaochen Hu, Huifeng Guo, Ruiming Tang, Han Yuan, Xiuqiang He, Mark Coates
Because of the multitude of relationships existing in recommender systems, Graph Neural Networks (GNNs) based approaches have been proposed to better characterize the various relationships between a user and items while modeling a user's preferences.
no code implementations • 18 Jun 2020 • Sijin Zhou, Xinyi Dai, Haokun Chen, Wei-Nan Zhang, Kan Ren, Ruiming Tang, Xiuqiang He, Yong Yu
Interactive recommender system (IRS) has drawn huge attention because of its flexible recommendation strategy and the consideration of optimal long-term user experiences.
no code implementations • 14 Apr 2020 • Yichao Wang, Xiangyu Zhang, Zhirong Liu, Zhenhua Dong, Xinhua Feng, Ruiming Tang, Xiuqiang He
To overcome such limitation, our re-ranking model proposes a personalized DPP to model the trade-off between accuracy and diversity for each individual user.
4 code implementations • 25 Mar 2020 • Bin Liu, Chenxu Zhu, Guilin Li, Wei-Nan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo Li, Yong Yu
By implementing a regularized optimizer over the architecture parameters, the model can automatically identify and remove the redundant feature interactions during the training process of the model.
Ranked #15 on
Click-Through Rate Prediction
on Criteo
no code implementations • 1 Jan 2020 • Jianing Sun, Yingxue Zhang, Chen Ma, Mark Coates, Huifeng Guo, Ruiming Tang, Xiuqiang He
In this work, we develop a graph convolution-based recommendation framework, named Multi-Graph Convolution Collaborative Filtering (Multi-GCCF), which explicitly incorporates multiple graphs in the embedding learning process.
5 code implementations • 9 Apr 2019 • Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, Yuzhou Zhang
Easy-to-use, Modular and Extendible package of deep-learning based CTR models. DeepFM, DeepInterestNetwork(DIN), DeepInterestEvolutionNetwork(DIEN), DeepCrossNetwork(DCN), AttentionalFactorizationMachine(AFM), Neural Factorization Machine(NFM), AutoInt, Deep Session Interest Network(DSIN)
Ranked #1 on
Click-Through Rate Prediction
on Huawei App Store
no code implementations • 14 Nov 2018 • Haokun Chen, Xinyi Dai, Han Cai, Wei-Nan Zhang, Xuejian Wang, Ruiming Tang, Yuzhou Zhang, Yong Yu
Reinforcement learning (RL) has recently been introduced to interactive recommender systems (IRS) because of its nature of learning from dynamic interactions and planning for long-run performance.
5 code implementations • 29 Oct 2018 • Feng Liu, Ruiming Tang, Xutao Li, Wei-Nan Zhang, Yunming Ye, Haokun Chen, Huifeng Guo, Yuzhou Zhang
The DRR framework treats recommendation as a sequential decision making procedure and adopts an "Actor-Critic" reinforcement learning scheme to model the interactions between the users and recommender systems, which can consider both the dynamic adaptation and long-term rewards.
7 code implementations • 1 Jul 2018 • Yanru Qu, Bohui Fang, Wei-Nan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo, Yong Yu, Xiuqiang He
User response prediction is a crucial component for personalized information retrieval and filtering scenarios, such as recommender system and web search.
5 code implementations • 12 Apr 2018 • Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He, Zhenhua Dong
In this paper, we study two instances of DeepFM where its "deep" component is DNN and PNN respectively, for which we denote as DeepFM-D and DeepFM-P. Comprehensive experiments are conducted to demonstrate the effectiveness of DeepFM-D and DeepFM-P over the existing models for CTR prediction, on both benchmark data and commercial data.
19 code implementations • 13 Mar 2017 • Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He
Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems.
Ranked #1 on
Click-Through Rate Prediction
on Company*