Action Unit Detection

14 papers with code • 1 benchmarks • 3 datasets

Action unit detection is the task of detecting action units from a video - for example, types of facial action units (lip tightening, cheek raising) from a video of a face.

( Image credit: AU R-CNN )

Libraries

Use these libraries to find Action Unit Detection models and implementations

Latest papers with no code

AUD-TGN: Advancing Action Unit Detection with Temporal Convolution and GPT-2 in Wild Audiovisual Contexts

no code yet • 20 Mar 2024

Leveraging the synergy of both audio data and visual data is essential for understanding human emotions and behaviors, especially in in-the-wild setting.

Leveraging Synthetic Data for Generalizable and Fair Facial Action Unit Detection

no code yet • 15 Mar 2024

Then, we use MSDA to transfer the AU detection knowledge from a real dataset and the synthetic dataset to a target dataset.

Contrastive Learning of Person-independent Representations for Facial Action Unit Detection

no code yet • 6 Mar 2024

We formulate the self-supervised AU representation learning signals in two-fold: (1) AU representation should be frame-wisely discriminative within a short video clip; (2) Facial frames sampled from different identities but show analogous facial AUs should have consistent AU representations.

The 6th Affective Behavior Analysis in-the-wild (ABAW) Competition

no code yet • 29 Feb 2024

This paper describes the 6th Affective Behavior Analysis in-the-wild (ABAW) Competition, which is part of the respective Workshop held in conjunction with IEEE CVPR 2024.

Distribution Matching for Multi-Task Learning of Classification Tasks: a Large-Scale Study on Faces & Beyond

no code yet • 2 Jan 2024

Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space, or parameter transfer.

Boosting Facial Action Unit Detection Through Jointly Learning Facial Landmark Detection and Domain Separation and Reconstruction

no code yet • 8 Oct 2023

Recently how to introduce large amounts of unlabeled facial images in the wild into supervised Facial Action Unit (AU) detection frameworks has become a challenging problem.

Occlusion Aware Student Emotion Recognition based on Facial Action Unit Detection

no code yet • 18 Jul 2023

Given that approximately half of science, technology, engineering, and mathematics (STEM) undergraduate students in U. S. colleges and universities leave by the end of the first year [15], it is crucial to improve the quality of classroom environments.

Fighting over-fitting with quantization for learning deep neural networks on noisy labels

no code yet • 21 Mar 2023

The rising performance of deep neural networks is often empirically attributed to an increase in the available computational power, which allows complex models to be trained upon large amounts of annotated data.

Multi-modal Facial Action Unit Detection with Large Pre-trained Models for the 5th Competition on Affective Behavior Analysis in-the-wild

no code yet • 19 Mar 2023

Facial action unit detection has emerged as an important task within facial expression analysis, aimed at detecting specific pre-defined, objective facial expressions, such as lip tightening and cheek raising.

ABAW : Facial Expression Recognition in the wild

no code yet • 17 Mar 2023

The fifth Affective Behavior Analysis in-the-wild (ABAW) competition has multiple challenges such as Valence-Arousal Estimation Challenge, Expression Classification Challenge, Action Unit Detection Challenge, Emotional Reaction Intensity Estimation Challenge.