Search Results for author: Yongshan Ding

Found 11 papers, 6 papers with code

RobustState: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training

no code implementations27 Nov 2023 Hanrui Wang, Yilian Liu, Pengyu Liu, Jiaqi Gu, Zirui Li, Zhiding Liang, Jinglei Cheng, Yongshan Ding, Xuehai Qian, Yiyu Shi, David Z. Pan, Frederic T. Chong, Song Han

Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP).

Transformer-QEC: Quantum Error Correction Code Decoding with Transferable Transformers

no code implementations27 Nov 2023 Hanrui Wang, Pengyu Liu, Kevin Shao, Dantong Li, Jiaqi Gu, David Z. Pan, Yongshan Ding, Song Han

Quantum Error Correction (QEC) mitigates this by employing redundancy, distributing quantum information across multiple data qubits and utilizing syndrome qubits to monitor their states for errors.

Transfer Learning

QuEst: Graph Transformer for Quantum Circuit Reliability Estimation

1 code implementation30 Oct 2022 Hanrui Wang, Pengyu Liu, Jinglei Cheng, Zhiding Liang, Jiaqi Gu, Zirui Li, Yongshan Ding, Weiwen Jiang, Yiyu Shi, Xuehai Qian, David Z. Pan, Frederic T. Chong, Song Han

Specifically, the TorchQuantum library also supports using data-driven ML models to solve problems in quantum system research, such as predicting the impact of quantum noise on circuit fidelity and improving the quantum circuit compilation efficiency.

QOC: Quantum On-Chip Training with Parameter Shift and Gradient Pruning

1 code implementation26 Feb 2022 Hanrui Wang, Zirui Li, Jiaqi Gu, Yongshan Ding, David Z. Pan, Song Han

Nevertheless, we find that due to the significant quantum errors (noises) on real machines, gradients obtained from naive parameter shift have low fidelity and thus degrading the training accuracy.

Image Classification

QuantumNAT: Quantum Noise-Aware Training with Noise Injection, Quantization and Normalization

2 code implementations21 Oct 2021 Hanrui Wang, Jiaqi Gu, Yongshan Ding, Zirui Li, Frederic T. Chong, David Z. Pan, Song Han

Furthermore, to improve the robustness against noise, we propose noise injection to the training process by inserting quantum error gates to PQC according to realistic noise models of quantum hardware.

Denoising Quantization

Towards Efficient On-Chip Training of Quantum Neural Networks

no code implementations29 Sep 2021 Hanrui Wang, Zirui Li, Jiaqi Gu, Yongshan Ding, David Z. Pan, Song Han

The results demonstrate that our on-chip training achieves over 90% and 60% accuracy for 2-class and 4-class image classification tasks.

Image Classification

QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits

2 code implementations22 Jul 2021 Hanrui Wang, Yongshan Ding, Jiaqi Gu, Zirui Li, Yujun Lin, David Z. Pan, Frederic T. Chong, Song Han

Extensively evaluated with 12 QML and VQE benchmarks on 14 quantum computers, QuantumNAS significantly outperforms baselines.

Systematic Crosstalk Mitigation for Superconducting Qubits via Frequency-Aware Compilation

1 code implementation21 Aug 2020 Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin, Richard Rines, Thomas Propson, Frederic T. Chong

One of the key challenges in current Noisy Intermediate-Scale Quantum (NISQ) computers is to control a quantum system with high-fidelity quantum gates.

Quantum Physics

SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via Cost-Effective Uncomputation

2 code implementations18 Apr 2020 Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana Franklin, Margaret Martonosi, Frederic T. Chong

Compiling high-level quantum programs to machines that are size constrained (i. e. limited number of quantum bits) and time constrained (i. e. limited number of quantum operations) is challenging.

Quantum Physics

Cannot find the paper you are looking for? You can Submit a new open access paper.