KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) is one of the most popular datasets for use in mobile robotics and autonomous driving. It consists of hours of traffic scenarios recorded with a variety of sensor modalities, including high-resolution RGB, grayscale stereo cameras, and a 3D laser scanner. Despite its popularity, the dataset itself does not contain ground truth for semantic segmentation. However, various researchers have manually annotated parts of the dataset to fit their necessities. Álvarez et al. generated ground truth for 323 images from the road detection challenge with three classes: road, vertical, and sky. Zhang et al. annotated 252 (140 for training and 112 for testing) acquisitions – RGB and Velodyne scans – from the tracking challenge for ten object categories: building, sky, road, vegetation, sidewalk, car, pedestrian, cyclist, sign/pole, and fence. Ros et al. labeled 170 training images and 46 testing images (from the visual odome
2,034 PAPERS • 103 BENCHMARKS
Office-Home is a benchmark dataset for domain adaptation which contains 4 domains where each domain consists of 65 categories. The four domains are: Art – artistic images in the form of sketches, paintings, ornamentation, etc.; Clipart – collection of clipart images; Product – images of objects without a background and Real-World – images of objects captured with a regular camera. It contains 15,500 images, with an average of around 70 images per class and a maximum of 99 images in a class.
466 PAPERS • 9 BENCHMARKS
The ImageCLEF-DA dataset is a benchmark dataset for ImageCLEF 2014 domain adaptation challenge, which contains three domains: Caltech-256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P). For each domain, there are 12 categories and 50 images in each category.
79 PAPERS • 6 BENCHMARKS
This dataset contains Bangla handwritten numerals, basic characters and compound characters. This dataset was collected from multiple geographical location within Bangladesh and includes sample collected from a variety of aged groups. This dataset can also be used for other classification problems i.e: gender, age, district.
3 PAPERS • 2 BENCHMARKS
By releasing this dataset, we aim at providing a new testbed for computer vision techniques using Deep Learning. The main peculiarity is the shift from the domain of "natural images" proper of common benchmark dataset to biological imaging. We anticipate that the advantages of doing so could be two-fold: i) fostering research in biomedical-related fields - for which popular pre-trained models perform typically poorly - and ii) promoting methodological research in deep learning by addressing peculiar requirements of these images. Possible applications include but are not limited to semantic segmentation, object detection and object counting. The data consist of 283 high-resolution pictures (1600x1200 pixels) of mice brain slices acquired through a fluorescence microscope. The final goal is to individuate and count neurons highlighted in the pictures by means of a marker, so to assess the result of a biological experiment. The corresponding ground-truth labels were generated through a hy
2 PAPERS • NO BENCHMARKS YET
The Sims4Action Dataset: a videogame-based dataset for Synthetic→Real domain adaptation for human activity recognition.
1 PAPER • NO BENCHMARKS YET
The dataset contains more than 100k code patch pairs extracted from open source projects on GitHub. Each pair comes with the erroneous and the fixed version of the corresponding code snippet. Instead of the whole file, the code snippets are extracted to focus on the problematic region (error line + other lines around it). For each sample, the repository name, the commit id, and the file names are provided so that one can access the complete files in case of interest.
1 PAPER • 1 BENCHMARK
Dataset contains images with apples infected by scab. The images are grouped in two folders: "Healthy" and "Scab". The collection of digital images were carried out in different locations of Latvia. Digital images with characteristic scab symptoms on fruits were collected by the Institute of Horticulture (LatHort) under project "lzp-2019/1-0094 Application of deep learning and datamining for the study of plant-pathogen interaction: the case of apple and pear scab" with a goal to create mobile application for apple scab detection using convolution neural networks. Devices: smartphone cameras (12 MP, 13 MP, 48 MP) and a digital compact camera (10 MP). The collection of images was carried out in field conditions, in orchards. The images were taken at three different stages of the day - in the morning (9:00-10:00), around noon (12:00-14:00), as well as in the evening (16:00-17:00) to provide a variety of natural light conditions. The images were also taken on both sunny days and overcast d
0 PAPER • NO BENCHMARKS YET
Dataset contains images with apple leaves infected by scab. The images are grouped in two folders: "Healthy" and "Scab". The collection of digital images were carried out in different locations of Latvia. Digital images with characteristic scab symptoms on leaves were collected by the Institute of Horticulture (LatHort) under project "lzp-2019/1-0094 Application of deep learning and datamining for the study of plant-pathogen interaction: the case of apple and pear scab" with a goal to create mobile application for apple scab detection using convolution neural networks. Devices: smartphone cameras (12 MP, 13 MP, 48 MP) and a digital compact camera (10 MP). The collection of images was carried out in field conditions, in orchards. The images were taken at three different stages of the day - in the morning (9:00-10:00), around noon (12:00-14:00), as well as in the evening (16:00-17:00) to provide a variety of natural light conditions. The images were also taken on both sunny days and over