Enabling 3D Object Detection with a Low-Resolution LiDAR

4 May 2021  ·  Lin Bai, Yiming Zhao, Xinming Huang ·

Light Detection And Ranging (LiDAR) has been widely used in autonomous vehicles for perception and localization. However, the cost of a high-resolution LiDAR is still prohibitively expensive, while its low-resolution counterpart is much more affordable. Therefore, using low-resolution LiDAR for autonomous driving is an economically viable solution, but the point cloud sparsity makes it extremely challenging. In this paper, we propose a two-stage neural network framework that enables 3D object detection using a low-resolution LiDAR. Taking input from a low-resolution LiDAR point cloud and a monocular camera image, a depth completion network is employed to produce dense point cloud that is subsequently processed by a voxel-based network for 3D object detection. Evaluated with KITTI dataset for 3D object detection in Bird-Eye View (BEV), the experimental result shows that the proposed approach performs significantly better than directly applying the 16-line LiDAR point cloud for object detection. For both easy and moderate cases, our 3D vehicle detection results are close to those using 64-line high-resolution LiDARs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here