A Simple Unified Framework for Anomaly Detection in Deep Reinforcement Learning

21 Sep 2021  ·  Hongming Zhang, Ke Sun, Bo Xu, Linglong Kong, Martin Müller ·

Abnormal states in deep reinforcement learning~(RL) are states that are beyond the scope of an RL policy. Such states may lead to sub-optimal and unsafe decision making for the RL system, impeding its deployment in real scenarios. In this paper, we propose a simple yet effective anomaly detection framework for deep RL algorithms that simultaneously considers random, adversarial and out-of-distribution~(OOD) state outliers. In particular, we attain the class-conditional distributions for each action class under the Gaussian assumption, and rely on these distributions to discriminate between inliers and outliers based on Mahalanobis Distance~(MD) and Robust Mahalanobis Distance. We conduct extensive experiments on Atari games that verify the effectiveness of our detection strategies. To the best of our knowledge, we present the first in-detail study of statistical and adversarial anomaly detection in deep RL algorithms. This simple unified anomaly detection paves the way towards deploying safe RL systems in real-world applications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here