Brain Tumor segmentation is one of the most crucial and arduous tasks in the terrain of medical image processing as a human-assisted manual classification can result in inaccurate prediction and diagnosis. Moreover, it is an aggravating task when there is a large amount of data present to be assisted. Brain tumors have high diversity in appearance and there is a similarity between tumor and normal tissues and thus the extraction of tumor regions from images becomes unyielding. In this paper, we proposed a method to extract brain tumor from 2D Magnetic Resonance brain Images (MRI) by Fuzzy C-Means clustering algorithm which was followed by traditional classifiers and convolutional neural network. The experimental study was carried on a real-time dataset with diverse tumor sizes, locations, shapes, and different image intensities. In traditional classifier part, we applied six traditional classifiers namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), Logistic Regression, Naïve Bayes and Random Forest which was implemented in scikit-learn. Afterward, we moved on to Convolutional Neural Network (CNN) which is implemented using Keras and Tensorflow because it yields to a better performance than the traditional ones. In our work, CNN gained an accuracy of 97.87%, which is very compelling. The main aim of this paper is to distinguish between normal and abnormal pixels, based on texture based and statistical based features.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods