Chance-Constrained Control with Lexicographic Deep Reinforcement Learning

This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes, in which the controller seeks to ensure that the probability of satisfying the constraint is above a given threshold. Standard DeepRL approaches require i) the constraints to be included as additional weighted terms in the cost function, in a multi-objective fashion, and ii) the tuning of the introduced weights during the training phase of the Deep Neural Network (DNN) according to the probability thresholds... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper