PoET: Pose Estimation Transformer for Single-View, Multi-Object 6D Pose Estimation

25 Nov 2022  ·  Thomas Jantos, Mohamed Amin Hamdad, Wolfgang Granig, Stephan Weiss, Jan Steinbrener ·

Accurate 6D object pose estimation is an important task for a variety of robotic applications such as grasping or localization. It is a challenging task due to object symmetries, clutter and occlusion, but it becomes more challenging when additional information, such as depth and 3D models, is not provided. We present a transformer-based approach that takes an RGB image as input and predicts a 6D pose for each object in the image. Besides the image, our network does not require any additional information such as depth maps or 3D object models. First, the image is passed through an object detector to generate feature maps and to detect objects. Then, the feature maps are fed into a transformer with the detected bounding boxes as additional information. Afterwards, the output object queries are processed by a separate translation and rotation head. We achieve state-of-the-art results for RGB-only approaches on the challenging YCB-V dataset. We illustrate the suitability of the resulting model as pose sensor for a 6-DoF state estimation task. Code is available at https://github.com/aau-cns/poet.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here