Probabilistic Robust Autoencoders for Outlier Detection

1 Oct 2021  ·  Ofir Lindenbaum, Yariv Aizenbud, Yuval Kluger ·

Anomalies (or outliers) are prevalent in real-world empirical observations and potentially mask important underlying structures. Accurate identification of anomalous samples is crucial for the success of downstream data analysis tasks. To automatically identify anomalies, we propose Probabilistic Robust AutoEncoder (PRAE). PRAE aims to simultaneously remove outliers and identify a low-dimensional representation for the inlier samples. We first present the Robust AutoEncoder (RAE) objective as a minimization problem for splitting the data into inliers and outliers. Our objective is designed to exclude outliers while including a subset of samples (inliers) that can be effectively reconstructed using an AutoEncoder (AE). RAE minimizes the autoencoder's reconstruction error while incorporating as many samples as possible. This could be formulated via regularization by subtracting an $\ell_0$ norm counting the number of selected samples from the reconstruction term. Unfortunately, this leads to an intractable combinatorial problem. Therefore, we propose two probabilistic relaxations of RAE, which are differentiable and alleviate the need for a combinatorial search. We prove that the solution to the PRAE problem is equivalent to the solution of RAE. We use synthetic data to show that PRAE can accurately remove outliers in a wide range of contamination levels. Finally, we demonstrate that using PRAE for anomaly detection leads to state-of-the-art results on various benchmark datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods