Progressive extension of reinforcement learning action dimension for asymmetric assembly tasks

6 Apr 2021  ·  Yuhang Gai, Jiuming Guo, Dan Wu, Ken Chen ·

Reinforcement learning (RL) is always the preferred embodiment to construct the control strategy of complex tasks, like asymmetric assembly tasks. However, the convergence speed of reinforcement learning severely restricts its practical application... In this paper, the convergence is first accelerated by combining RL and compliance control. Then a completely innovative progressive extension of action dimension (PEAD) mechanism is proposed to optimize the convergence of RL algorithms. The PEAD method is verified in DDPG and PPO. The results demonstrate the PEAD method will enhance the data-efficiency and time-efficiency of RL algorithms as well as increase the stable reward, which provides more potential for the application of RL. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.