PyOD: A Python Toolbox for Scalable Outlier Detection

6 Jan 2019  ·  Yue Zhao, Zain Nasrullah, Zheng Li ·

PyOD is an open-source Python toolbox for performing scalable outlier detection on multivariate data. Uniquely, it provides access to a wide range of outlier detection algorithms, including established outlier ensembles and more recent neural network-based approaches, under a single, well-documented API designed for use by both practitioners and researchers. With robustness and scalability in mind, best practices such as unit testing, continuous integration, code coverage, maintainability checks, interactive examples and parallelization are emphasized as core components in the toolbox's development. PyOD is compatible with both Python 2 and 3 and can be installed through Python Package Index (PyPI) or https://github.com/yzhao062/pyod.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods