SensitiveNets: Learning Agnostic Representations with Application to Face Images

This work proposes a novel privacy-preserving neural network feature representation to suppress the sensitive information of a learned space while maintaining the utility of the data. The new international regulation for personal data protection forces data controllers to guarantee privacy and avoid discriminative hazards while managing sensitive data of users... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet