Terminal Prediction as an Auxiliary Task for Deep Reinforcement Learning

24 Jul 2019Bilal KartalPablo Hernandez-LealMatthew E. Taylor

Deep reinforcement learning has achieved great successes in recent years, but there are still open challenges, such as convergence to locally optimal policies and sample inefficiency. In this paper, we contribute a novel self-supervised auxiliary task, i.e., Terminal Prediction (TP), estimating temporal closeness to terminal states for episodic tasks... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.