Two-dimensional total absorption spectroscopy with conditional generative adversarial networks

23 Jun 2022  ·  Cade Dembski, Michelle P. Kuchera, Sean Liddick, Raghu Ramanujan, Artemis Spyrou ·

We explore the use of machine learning techniques to remove the response of large volume $\gamma$-ray detectors from experimental spectra. Segmented $\gamma$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $\gamma$-ray energy (E$_\gamma$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$_\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E$_x$ and E$_\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods