no code implementations • 4 Oct 2024 • Jason Yang, Aadyot Bhatnagar, Jeffrey A. Ruffolo, Ali Madani
Impressively, it can also generate within the joint distribution of enzymatic function and taxonomy, and it can generalize to rare and unseen enzyme families and taxonomies.
1 code implementation • 21 Dec 2023 • Alex Morehead, Jeffrey Ruffolo, Aadyot Bhatnagar, Ali Madani
In this work, we introduce MMDiff, a generative model that jointly designs sequences and structures of nucleic acid and protein complexes, independently or in complex, using joint SE(3)-discrete diffusion noise.
2 code implementations • 15 Feb 2023 • Aadyot Bhatnagar, Huan Wang, Caiming Xiong, Yu Bai
We prove that our methods achieve near-optimal strongly adaptive regret for all interval lengths simultaneously, and approximately valid coverage.
no code implementations • 19 Oct 2021 • Devansh Arpit, Aadyot Bhatnagar, Huan Wang, Caiming Xiong
Wasserstein autoencoder (WAE) shows that matching two distributions is equivalent to minimizing a simple autoencoder (AE) loss under the constraint that the latent space of this AE matches a pre-specified prior distribution.
2 code implementations • 20 Sep 2021 • Aadyot Bhatnagar, Paul Kassianik, Chenghao Liu, Tian Lan, Wenzhuo Yang, Rowan Cassius, Doyen Sahoo, Devansh Arpit, Sri Subramanian, Gerald Woo, Amrita Saha, Arun Kumar Jagota, Gokulakrishnan Gopalakrishnan, Manpreet Singh, K C Krithika, Sukumar Maddineni, Daeki Cho, Bo Zong, Yingbo Zhou, Caiming Xiong, Silvio Savarese, Steven Hoi, Huan Wang
We introduce Merlion, an open-source machine learning library for time series.
no code implementations • 22 Feb 2021 • Rachel Luo, Aadyot Bhatnagar, Yu Bai, Shengjia Zhao, Huan Wang, Caiming Xiong, Silvio Savarese, Stefano Ermon, Edward Schmerling, Marco Pavone
In this work, we propose the local calibration error (LCE) to span the gap between average and individual reliability.
no code implementations • 1 Jan 2021 • Devansh Arpit, Aadyot Bhatnagar, Huan Wang, Caiming Xiong
Quantitatively, we show that our algorithm achieves a new state-of-the-art FID of 54. 36 on CIFAR-10, and performs competitively with existing models on CelebA in terms of FID score.
no code implementations • 8 Apr 2020 • Weiran Wang, Guangsen Wang, Aadyot Bhatnagar, Yingbo Zhou, Caiming Xiong, Richard Socher
For Switchboard, our phone-based BPE system achieves 6. 8\%/14. 4\% word error rate (WER) on the Switchboard/CallHome portion of the test set while joint decoding achieves 6. 3\%/13. 3\% WER.
no code implementations • 3 Apr 2018 • Jialin Song, Ravi Lanka, Albert Zhao, Aadyot Bhatnagar, Yisong Yue, Masahiro Ono
We study the problem of learning a good search policy for combinatorial search spaces.