1 code implementation • 18 Jul 2024 • Jan Hendrik Kirchner, Yining Chen, Harri Edwards, Jan Leike, Nat McAleese, Yuri Burda
One way to increase confidence in the outputs of Large Language Models (LLMs) is to support them with reasoning that is clear and easy to check -- a property we call legibility.
3 code implementations • Preprint 2023 • Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, Karl Cobbe
We conduct our own investigation, finding that process supervision significantly outperforms outcome supervision for training models to solve problems from the challenging MATH dataset.
Ranked #1 on Math Word Problem Solving on MATH minival (using extra training data)
no code implementations • 4 Mar 2022 • Ingmar Kanitscheider, Harri Edwards
One approach is to train a second RL agent, called a teacher, who samples environments that are conducive for the learning of student agents.
6 code implementations • 6 Jan 2022 • Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, Vedant Misra
In this paper we propose to study generalization of neural networks on small algorithmically generated datasets.
13 code implementations • 7 Jul 2021 • Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, Wojciech Zaremba
We introduce Codex, a GPT language model fine-tuned on publicly available code from GitHub, and study its Python code-writing capabilities.
Ranked #1 on Multi-task Language Understanding on BBH-alg
5 code implementations • ICLR 2019 • Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, Alexei A. Efros
However, annotating each environment with hand-designed, dense rewards is not scalable, motivating the need for developing reward functions that are intrinsic to the agent.
Ranked #14 on Atari Games on Atari 2600 Montezuma's Revenge