no code implementations • 27 May 2023 • Sijia Wang, Alexander Hanbo Li, Henry Zhu, Sheng Zhang, Chung-Wei Hang, Pramuditha Perera, Jie Ma, William Wang, Zhiguo Wang, Vittorio Castelli, Bing Xiang, Patrick Ng
Entities can be expressed in diverse formats, such as texts, images, or column names and cell values in tables.
no code implementations • 13 Feb 2023 • Danilo Ribeiro, Shen Wang, Xiaofei Ma, Henry Zhu, Rui Dong, Deguang Kong, Juliette Burger, Anjelica Ramos, William Wang, Zhiheng Huang, George Karypis, Bing Xiang, Dan Roth
We introduce STREET, a unified multi-task and multi-domain natural language reasoning and explanation benchmark.
no code implementations • 17 Dec 2022 • Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan, Henry Zhu, Anuj Chauhan, Alexander Li, Lin Pan, Jun Wang, Chung-Wei Hang, Sheng Zhang, Marvin Dong, Joe Lilien, Patrick Ng, Zhiguo Wang, Vittorio Castelli, Bing Xiang
In this paper, we first examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data.
1 code implementation • Findings (NAACL) 2022 • Danilo Ribeiro, Shen Wang, Xiaofei Ma, Rui Dong, Xiaokai Wei, Henry Zhu, Xinchi Chen, Zhiheng Huang, Peng Xu, Andrew Arnold, Dan Roth
Our model is able to explain a given hypothesis by systematically generating a step-by-step explanation from textual premises.
1 code implementation • 18 Sep 2021 • Alex Chohlas-Wood, Madison Coots, Henry Zhu, Emma Brunskill, Sharad Goel
In our approach, one first elicits stakeholder preferences over the space of possible decisions and the resulting outcomes--such as preferences for balancing spending parity against court appearance rates.
1 code implementation • EMNLP 2020 • Siamak Shakeri, Cicero Nogueira dos santos, Henry Zhu, Patrick Ng, Feng Nan, Zhiguo Wang, Ramesh Nallapati, Bing Xiang
Our model comprises a single transformer-based encoder-decoder network that is trained end-to-end to generate both answers and questions.
no code implementations • ICLR 2020 • Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Kumar, Sergey Levine
The success of reinforcement learning in the real world has been limited to instrumented laboratory scenarios, often requiring arduous human supervision to enable continuous learning.
no code implementations • 27 Apr 2020 • Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Kumar, Sergey Levine
In this work, we discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world.
1 code implementation • 25 Sep 2019 • Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, Vikash Kumar
ROBEL introduces two robots, each aimed to accelerate reinforcement learning research in different task domains: D'Claw is a three-fingered hand robot that facilitates learning dexterous manipulation tasks, and D'Kitty is a four-legged robot that facilitates learning agile legged locomotion tasks.
54 code implementations • 13 Dec 2018 • Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, Sergey Levine
A fork of OpenAI Baselines, implementations of reinforcement learning algorithms
no code implementations • 14 Oct 2018 • Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, Vikash Kumar
Dexterous multi-fingered robotic hands can perform a wide range of manipulation skills, making them an appealing component for general-purpose robotic manipulators.