no code implementations • 27 Nov 2024 • Zi Li, Ying Chen, Zeli Chen, Yanzhou Su, Tai Ma, Tony C. W. Mok, Yan-Jie Zhou, Yunhai Bai, Zhinlin Zheng, Le Lu, Yirui Wang, Jia Ge, Xianghua Ye, Senxiang Yan, Dakai Jin
% In this study, we propose a novel approach to directly segment NPC gross tumors on non-contrast planning CT images, circumventing potential registration errors when aligning MRI or MRI-derived tumor masks to planning CT. To address the low contrast issues between tumors and adjacent normal structures in planning CT, we introduce a 3D Semantic Asymmetry Tumor segmentation (SATs) method.
1 code implementation • 25 Nov 2023 • Lin Tian, Zi Li, Fengze Liu, Xiaoyu Bai, Jia Ge, Le Lu, Marc Niethammer, Xianghua Ye, Ke Yan, Daikai Jin
In this work, we introduce a fast and accurate method for unsupervised 3D medical image registration building on top of a Self-supervised Anatomical eMbedding (SAM) algorithm, which is capable of computing dense anatomical correspondences between two images at the voxel level.
Ranked #8 on Image Registration on Unpaired-abdomen-CT
1 code implementation • 25 Nov 2023 • Xiaoyu Bai, Fan Bai, Xiaofei Huo, Jia Ge, JingJing Lu, Xianghua Ye, Ke Yan, Yong Xia
They use self-supervised learning to acquire a discriminative embedding for each voxel within the image.
1 code implementation • 19 Jul 2023 • Zi Li, Lin Tian, Tony C. W. Mok, Xiaoyu Bai, Puyang Wang, Jia Ge, Jingren Zhou, Le Lu, Xianghua Ye, Ke Yan, Dakai Jin
Estimating displacement vector field via a cost volume computed in the feature space has shown great success in image registration, but it suffers excessive computation burdens.
no code implementations • 7 Jul 2023 • Xiaoyu Bai, Fan Bai, Xiaofei Huo, Jia Ge, Tony C. W. Mok, Zi Li, Minfeng Xu, Jingren Zhou, Le Lu, Dakai Jin, Xianghua Ye, JingJing Lu, Ke Yan
We then use this SAM to identify corresponding regions on paired images using robust grid-points matching, followed by a point-set based affine/rigid registration, and a deformable fine-tuning step to produce registered paired images.
no code implementations • 15 Jun 2023 • Puyang Wang, Dazhou Guo, Dandan Zheng, Minghui Zhang, Haogang Yu, Xin Sun, Jia Ge, Yun Gu, Le Lu, Xianghua Ye, Dakai Jin
Intrathoracic airway segmentation in computed tomography (CT) is a prerequisite for various respiratory disease analyses such as chronic obstructive pulmonary disease (COPD), asthma and lung cancer.
no code implementations • 1 Feb 2023 • Zhanghexuan Ji, Dazhou Guo, Puyang Wang, Ke Yan, Le Lu, Minfeng Xu, Jingren Zhou, Qifeng Wang, Jia Ge, Mingchen Gao, Xianghua Ye, Dakai Jin
Deep learning empowers the mainstream medical image segmentation methods.
no code implementations • ICCV 2023 • Zhanghexuan Ji, Dazhou Guo, Puyang Wang, Ke Yan, Le Lu, Minfeng Xu, Qifeng Wang, Jia Ge, Mingchen Gao, Xianghua Ye, Dakai Jin
In this work, we propose a new architectural CSS learning framework to learn a single deep segmentation model for segmenting a total of 143 whole-body organs.
no code implementations • 1 Nov 2021 • Dazhou Guo, Jia Ge, Xianghua Ye, Senxiang Yan, Yi Xin, Yuchen Song, Bing-shen Huang, Tsung-Min Hung, Zhuotun Zhu, Ling Peng, Yanping Ren, Rui Liu, Gong Zhang, Mengyuan Mao, Xiaohua Chen, Zhongjie Lu, Wenxiang Li, Yuzhen Chen, Lingyun Huang, Jing Xiao, Adam P. Harrison, Le Lu, Chien-Yu Lin, Dakai Jin, Tsung-Ying Ho
Accurate organ at risk (OAR) segmentation is critical to reduce the radiotherapy post-treatment complications.
no code implementations • 11 Oct 2021 • Xianghua Ye, Dazhou Guo, Chen-Kan Tseng, Jia Ge, Tsung-Min Hung, Ping-Ching Pai, Yanping Ren, Lu Zheng, Xinli Zhu, Ling Peng, Ying Chen, Xiaohua Chen, Chen-Yu Chou, Danni Chen, Jiaze Yu, Yuzhen Chen, Feiran Jiao, Yi Xin, Lingyun Huang, Guotong Xie, Jing Xiao, Le Lu, Senxiang Yan, Dakai Jin, Tsung-Ying Ho
252 institution-1 patients had a treatment planning-CT (pCT) and a pair of diagnostic FDG-PETCT; 354 patients from other 3 institutions had only pCT.
no code implementations • 20 Sep 2021 • Dazhou Guo, Xianghua Ye, Jia Ge, Xing Di, Le Lu, Lingyun Huang, Guotong Xie, Jing Xiao, Zhongjie Liu, Ling Peng, Senxiang Yan, Dakai Jin
Lymph node station (LNS) delineation from computed tomography (CT) scans is an indispensable step in radiation oncology workflow.