You need to log in to edit.

You can create a new account if you don't have one.

Or, discuss a change on Slack.

You can create a new account if you don't have one.

Or, discuss a change on Slack.

no code implementations • 25 Feb 2022 • Lindiwe Brigitte Malobola, Negar Rostamzadeh, Shakir Mohamed

Fashion is one of the ways in which we show ourselves to the world.

1 code implementation • 2 Apr 2021 • Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, Rachel Prudden, Amol Mandhane, Aidan Clark, Andrew Brock, Karen Simonyan, Raia Hadsell, Niall Robinson, Ellen Clancy, Alberto Arribas, Shakir Mohamed

To address these challenges, we present a Deep Generative Model for the probabilistic nowcasting of precipitation from radar.

no code implementations • 3 Feb 2021 • Nenad Tomasev, Kevin R. McKee, Jackie Kay, Shakir Mohamed

Advances in algorithmic fairness have largely omitted sexual orientation and gender identity.

no code implementations • 14 Dec 2020 • Mihaela Rosca, Theophane Weber, Arthur Gretton, Shakir Mohamed

How sensitive should machine learning models be to input changes?

no code implementations • NeurIPS Workshop ICBINB 2020 • Mihaela Rosca, Theophane Weber, Arthur Gretton, Shakir Mohamed

How sensitive should machine learning models be to input changes?

no code implementations • 8 Jul 2020 • Shakir Mohamed, Marie-Therese Png, William Isaac

By embedding a decolonial critical approach within its technical practice, AI communities can develop foresight and tactics that can better align research and technology development with established ethical principles, centring vulnerable peoples who continue to bear the brunt of negative impacts of innovation and scientific progress.

no code implementations • 11 May 2020 • Rachel Prudden, Samantha Adams, Dmitry Kangin, Niall Robinson, Suman Ravuri, Shakir Mohamed, Alberto Arribas

A 'nowcast' is a type of weather forecast which makes predictions in the very short term, typically less than two hours - a period in which traditional numerical weather prediction can be limited.

no code implementations • 6 Apr 2020 • Jessica Hamrick, Shakir Mohamed

As a remedy for this dilemma, we advocate for the adoption of a common conceptual framework which can be used to understand, analyze, and discuss research.

5 code implementations • 5 Dec 2019 • George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan

In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference.

2 code implementations • 25 Jun 2019 • Shakir Mohamed, Mihaela Rosca, Michael Figurnov, andriy mnih

This paper is a broad and accessible survey of the methods we have at our disposal for Monte Carlo gradient estimation in machine learning and across the statistical sciences: the problem of computing the gradient of an expectation of a function with respect to parameters defining the distribution that is integrated; the problem of sensitivity analysis.

5 code implementations • NeurIPS 2019 • Cyprien de Masson d'Autume, Mihaela Rosca, Jack Rae, Shakir Mohamed

Generative Adversarial Networks (GANs) enjoy great success at image generation, but have proven difficult to train in the domain of natural language.

1 code implementation • ICML 2018 • Suman Ravuri, Shakir Mohamed, Mihaela Rosca, Oriol Vinyals

We propose a method of moments (MoM) algorithm for training large-scale implicit generative models.

1 code implementation • NeurIPS 2018 • Michael Figurnov, Shakir Mohamed, andriy mnih

By providing a simple and efficient way of computing low-variance gradients of continuous random variables, the reparameterization trick has become the technique of choice for training a variety of latent variable models.

1 code implementation • 28 Mar 2018 • Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-Barwinska, Jack Rae, Piotr Mirowski, Joel Z. Leibo, Adam Santoro, Mevlana Gemici, Malcolm Reynolds, Tim Harley, Josh Abramson, Shakir Mohamed, Danilo Rezende, David Saxton, Adam Cain, Chloe Hillier, David Silver, Koray Kavukcuoglu, Matt Botvinick, Demis Hassabis, Timothy Lillicrap

Animals execute goal-directed behaviours despite the limited range and scope of their sensors.

no code implementations • 19 Feb 2018 • Mihaela Rosca, Balaji Lakshminarayanan, Shakir Mohamed

With the increasingly widespread deployment of generative models, there is a mounting need for a deeper understanding of their behaviors and limitations.

1 code implementation • ICLR 2018 • William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, Ian Goodfellow

Unlike other generative models, the data distribution is learned via a game between a generator (the generative model) and a discriminator (a teacher providing training signal) that each minimize their own cost.

5 code implementations • 15 Jun 2017 • Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed

In this paper, we develop a principle upon which auto-encoders can be combined with generative adversarial networks by exploiting the hierarchical structure of the generative model.

1 code implementation • ICLR 2018 • Marc G. Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan, Stephan Hoyer, Rémi Munos

We show that the Cram\'er distance possesses all three desired properties, combining the best of the Wasserstein and Kullback-Leibler divergences.

6 code implementations • ICLR 2017 • Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, Alexander Lerchner

Learning an interpretable factorised representation of the independent data generative factors of the world without supervision is an important precursor for the development of artificial intelligence that is able to learn and reason in the same way that humans do.

no code implementations • 7 Apr 2017 • Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, Shakir Mohamed

Models that can simulate how environments change in response to actions can be used by agents to plan and act efficiently.

no code implementations • 15 Feb 2017 • Mevlana Gemici, Chia-Chun Hung, Adam Santoro, Greg Wayne, Shakir Mohamed, Danilo J. Rezende, David Amos, Timothy Lillicrap

We consider the general problem of modeling temporal data with long-range dependencies, wherein new observations are fully or partially predictable based on temporally-distant, past observations.

no code implementations • 7 Nov 2016 • Mevlana C. Gemici, Danilo Rezende, Shakir Mohamed

In spite of the multitude of algorithms available for density estimation in the Euclidean spaces $\mathbf{R}^n$ that scale to large n (e. g. normalizing flows, kernel methods and variational approximations), most of these methods are not immediately suitable for density estimation in more general Riemannian manifolds.

no code implementations • 11 Oct 2016 • Shakir Mohamed, Balaji Lakshminarayanan

We frame GANs within the wider landscape of algorithms for learning in implicit generative models--models that only specify a stochastic procedure with which to generate data--and relate these ideas to modelling problems in related fields, such as econometrics and approximate Bayesian computation.

1 code implementation • NeurIPS 2016 • Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, Nicolas Heess

A key goal of computer vision is to recover the underlying 3D structure from 2D observations of the world.

1 code implementation • 17 Jun 2016 • Irina Higgins, Loic Matthey, Xavier Glorot, Arka Pal, Benigno Uria, Charles Blundell, Shakir Mohamed, Alexander Lerchner

Automated discovery of early visual concepts from raw image data is a major open challenge in AI research.

no code implementations • 16 Mar 2016 • Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, Daan Wierstra

In particular, humans have an ability for one-shot generalization: an ability to encounter a new concept, understand its structure, and then be able to generate compelling alternative variations of the concept.

2 code implementations • NeurIPS 2015 • Shakir Mohamed, Danilo Jimenez Rezende

The mutual information is a core statistical quantity that has applications in all areas of machine learning, whether this is in training of density models over multiple data modalities, in maximising the efficiency of noisy transmission channels, or when learning behaviour policies for exploration by artificial agents.

14 code implementations • 21 May 2015 • Danilo Jimenez Rezende, Shakir Mohamed

The choice of approximate posterior distribution is one of the core problems in variational inference.

14 code implementations • NeurIPS 2014 • Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling

The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis.

Ranked #50 on Image Classification on SVHN

5 code implementations • 16 Jan 2014 • Danilo Jimenez Rezende, Shakir Mohamed, Daan Wierstra

We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning.

no code implementations • NeurIPS 2012 • Marc Deisenroth, Shakir Mohamed

Rich and complex time-series data, such as those generated from engineering sys- tems, financial markets, videos or neural recordings are now a common feature of modern data analysis.

no code implementations • NeurIPS 2012 • Emtiyaz Khan, Shakir Mohamed, Kevin P. Murphy

We present a new variational inference algorithm for Gaussian processes with non-conjugate likelihood functions.

no code implementations • NeurIPS 2012 • Marc Peter Deisenroth, Shakir Mohamed

Rich and complex time-series data, such as those generated from engineering systems, financial markets, videos or neural recordings, are now a common feature of modern data analysis.

no code implementations • NeurIPS 2009 • Finale Doshi-Velez, Shakir Mohamed, Zoubin Ghahramani, David A. Knowles

Nonparametric Bayesian models provide a framework for flexible probabilistic modelling of complex datasets.

no code implementations • NeurIPS 2008 • Shakir Mohamed, Zoubin Ghahramani, Katherine A. Heller

Principal Components Analysis (PCA) has become established as one of the key tools for dimensionality reduction when dealing with real valued data.

Cannot find the paper you are looking for? You can
Submit a new open access paper.

Contact us on:
hello@paperswithcode.com
.
Papers With Code is a free resource with all data licensed under CC-BY-SA.