Representation Learning

3712 papers with code • 5 benchmarks • 9 datasets

Representation Learning is a process in machine learning where algorithms extract meaningful patterns from raw data to create representations that are easier to understand and process. These representations can be designed for interpretability, reveal hidden features, or be used for transfer learning. They are valuable across many fundamental machine learning tasks like image classification and retrieval.

Deep neural networks can be considered representation learning models that typically encode information which is projected into a different subspace. These representations are then usually passed on to a linear classifier to, for instance, train a classifier.

Representation learning can be divided into:

  • Supervised representation learning: learning representations on task A using annotated data and used to solve task B
  • Unsupervised representation learning: learning representations on a task in an unsupervised way (label-free data). These are then used to address downstream tasks and reducing the need for annotated data when learning news tasks. Powerful models like GPT and BERT leverage unsupervised representation learning to tackle language tasks.

More recently, self-supervised learning (SSL) is one of the main drivers behind unsupervised representation learning in fields like computer vision and NLP.

Here are some additional readings to go deeper on the task:

( Image credit: Visualizing and Understanding Convolutional Networks )

Libraries

Use these libraries to find Representation Learning models and implementations

Most implemented papers

How Powerful are Graph Neural Networks?

weihua916/powerful-gnns ICLR 2019

Here, we present a theoretical framework for analyzing the expressive power of GNNs to capture different graph structures.

Hierarchical Graph Representation Learning with Differentiable Pooling

dmlc/dgl NeurIPS 2018

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction.

Learning to Prompt for Vision-Language Models

kaiyangzhou/coop 2 Sep 2021

Large pre-trained vision-language models like CLIP have shown great potential in learning representations that are transferable across a wide range of downstream tasks.

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models

salesforce/lavis 30 Jan 2023

The cost of vision-and-language pre-training has become increasingly prohibitive due to end-to-end training of large-scale models.

Challenges in Representation Learning: A report on three machine learning contests

phamquiluan/ResidualMaskingNetwork 1 Jul 2013

The ICML 2013 Workshop on Challenges in Representation Learning focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge.

Very Deep Convolutional Neural Networks for Raw Waveforms

philipperemy/very-deep-convnets-raw-waveforms 1 Oct 2016

Our CNNs, with up to 34 weight layers, are efficient to optimize over very long sequences (e. g., vector of size 32000), necessary for processing acoustic waveforms.

NiftyNet: a deep-learning platform for medical imaging

NifTK/NiftyNet 11 Sep 2017

NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications.

Strategies for Pre-training Graph Neural Networks

snap-stanford/pretrain-gnns ICLR 2020

Many applications of machine learning require a model to make accurate pre-dictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training.

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

facebookresearch/convnext-v2 CVPR 2023

This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation.

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles

facebookresearch/vissl 30 Mar 2016

By following the principles of self-supervision, we build a convolutional neural network (CNN) that can be trained to solve Jigsaw puzzles as a pretext task, which requires no manual labeling, and then later repurposed to solve object classification and detection.