EAVL: Explicitly Align Vision and Language for Referring Image Segmentation

18 Aug 2023  ·  Yichen Yan, Xingjian He, Wenxuan Wang, Sihan Chen, Jing Liu ·

Referring image segmentation aims to segment an object mentioned in natural language from an image. A main challenge is language-related localization, which means locating the object with the relevant language. Previous approaches mainly focus on the fusion of vision and language features without fully addressing language-related localization. In previous approaches, fused vision-language features are directly fed into a decoder and pass through a convolution with a fixed kernel to obtain the result, which follows a similar pattern as traditional image segmentation. This approach does not explicitly align language and vision features in the segmentation stage, resulting in a suboptimal language-related localization. Different from previous methods, we propose Explicitly Align the Vision and Language for Referring Image Segmentation (EAVL). Instead of using a fixed convolution kernel, we propose an Aligner which explicitly aligns the vision and language features in the segmentation stage. Specifically, a series of unfixed convolution kernels are generated based on the input l, and then are use to explicitly align the vision and language features. To achieve this, We generate multiple queries that represent different emphases of the language expression. These queries are transformed into a series of query-based convolution kernels. Then, we utilize these kernels to do convolutions in the segmentation stage and obtain a series of segmentation masks. The final result is obtained through the aggregation of all masks. Our method can not only fuse vision and language features effectively but also exploit their potential in the segmentation stage. And most importantly, we explicitly align language features of different emphases with the image features to achieve language-related localization. Our method surpasses previous state-of-the-art methods on RefCOCO, RefCOCO+, and G-Ref by large margins.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods