Enhancing the Transformer with Explicit Relational Encoding for Math Problem Solving

We incorporate Tensor-Product Representations within the Transformer in order to better support the explicit representation of relation structure. Our Tensor-Product Transformer (TP-Transformer) sets a new state of the art on the recently-introduced Mathematics Dataset containing 56 categories of free-form math word-problems. The essential component of the model is a novel attention mechanism, called TP-Attention, which explicitly encodes the relations between each Transformer cell and the other cells from which values have been retrieved by attention. TP-Attention goes beyond linear combination of retrieved values, strengthening representation-building and resolving ambiguities introduced by multiple layers of standard attention. The TP-Transformer's attention maps give better insights into how it is capable of solving the Mathematics Dataset's challenging problems. Pretrained models and code will be made available after publication.

PDF Abstract

Datasets


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Question Answering Mathematics Dataset TP-Transformer Accuracy 0.8192 # 1

Methods