Harmonizing SO(3)-Equivariance with Neural Expressiveness: a Hybrid Deep Learning Framework Oriented to the Prediction of Electronic Structure Hamiltonian

1 Jan 2024  ·  Shi Yin, Xinyang Pan, XUDONG ZHU, Tianyu Gao, Haochong Zhang, Feng Wu, Lixin He ·

Deep learning for predicting the electronic structure Hamiltonian of quantum systems necessitates satisfying the covariance laws, among which achieving SO(3)-equivariance without sacrificing the non-linear expressive capability of networks remains unsolved. To navigate the harmonization between equivariance and expressiveness, we propose a deep learning method synergizing two distinct categories of neural mechanisms as a two-stage cascaded regression framework. The first stage corresponds to group theory-based neural mechanisms with inherent SO(3)-equivariant properties prior to the parameter learning process, while the second stage is characterized by a non-linear 3D graph Transformer network we propose featuring high capability on non-linear expressiveness. The novel combination lies in the point that, the first stage predicts baseline Hamiltonians with abundant SO(3)-equivariant features extracted, assisting the second stage in empirical learning of equivariance; and in turn, the second stage refines the first stage's output as a fine-grained prediction of Hamiltonians using powerful non-linear neural mappings, compensating for the intrinsic weakness on non-linear expressiveness capability of mechanisms in the first stage. Our method enables precise, generalizable predictions while maintaining robust SO(3)-equivariance under rotational transformations, and achieves state-of-the-art performance in Hamiltonian prediction on six benchmark databases.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods