$λ$-models: Effective Decision-Aware Reinforcement Learning with Latent Models

The idea of decision-aware model learning, that models should be accurate where it matters for decision-making, has gained prominence in model-based reinforcement learning. While promising theoretical results have been established, the empirical performance of algorithms leveraging a decision-aware loss has been lacking, especially in continuous control problems. In this paper, we present a study on the necessary components for decision-aware reinforcement learning models and we showcase design choices that enable well-performing algorithms. To this end, we provide a theoretical and empirical investigation into algorithmic ideas in the field. We highlight that empirical design decisions established in the MuZero line of works, most importantly the use of a latent model, are vital to achieving good performance for related algorithms. Furthermore, we show that the MuZero loss function is biased in stochastic environments and establish that this bias has practical consequences. Building on these findings, we present an overview of which decision-aware loss functions are best used in what empirical scenarios, providing actionable insights to practitioners in the field.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods