Learning A Physical-aware Diffusion Model Based on Transformer for Underwater Image Enhancement

3 Mar 2024  ·  Chen Zhao, Chenyu Dong, Weiling Cai ·

Underwater visuals undergo various complex degradations, inevitably influencing the efficiency of underwater vision tasks. Recently, diffusion models were employed to underwater image enhancement (UIE) tasks, and gained SOTA performance. However, these methods fail to consider the physical properties and underwater imaging mechanisms in the diffusion process, limiting information completion capacity of diffusion models. In this paper, we introduce a novel UIE framework, named PA-Diff, designed to exploiting the knowledge of physics to guide the diffusion process. PA-Diff consists of Physics Prior Generation (PPG) Branch, Implicit Neural Reconstruction (INR) Branch, and Physics-aware Diffusion Transformer (PDT) Branch. Our designed PPG branch aims to produce the prior knowledge of physics. With utilizing the physics prior knowledge to guide the diffusion process, PDT branch can obtain underwater-aware ability and model the complex distribution in real-world underwater scenes. INR Branch can learn robust feature representations from diverse underwater image via implicit neural representation, which reduces the difficulty of restoration for PDT branch. Extensive experiments prove that our method achieves best performance on UIE tasks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods