Multi-scale Transformer Pyramid Networks for Multivariate Time Series Forecasting

23 Aug 2023  ·  Yifan Zhang, Rui Wu, Sergiu M. Dascalu, Frederick C. Harris Jr ·

Multivariate Time Series (MTS) forecasting involves modeling temporal dependencies within historical records. Transformers have demonstrated remarkable performance in MTS forecasting due to their capability to capture long-term dependencies. However, prior work has been confined to modeling temporal dependencies at either a fixed scale or multiple scales that exponentially increase (most with base 2). This limitation hinders their effectiveness in capturing diverse seasonalities, such as hourly and daily patterns. In this paper, we introduce a dimension invariant embedding technique that captures short-term temporal dependencies and projects MTS data into a higher-dimensional space, while preserving the dimensions of time steps and variables in MTS data. Furthermore, we present a novel Multi-scale Transformer Pyramid Network (MTPNet), specifically designed to effectively capture temporal dependencies at multiple unconstrained scales. The predictions are inferred from multi-scale latent representations obtained from transformers at various scales. Extensive experiments on nine benchmark datasets demonstrate that the proposed MTPNet outperforms recent state-of-the-art methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods