Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection
Open-vocabulary object detection aims to provide object detectors trained on a fixed set of object categories with the generalizability to detect objects described by arbitrary text queries. Previous methods adopt knowledge distillation to extract knowledge from Pretrained Vision-and-Language Models (PVLMs) and transfer it to detectors. However, due to the non-adaptive proposal cropping and single-level feature mimicking processes, they suffer from information destruction during knowledge extraction and inefficient knowledge transfer. To remedy these limitations, we propose an Object-Aware Distillation Pyramid (OADP) framework, including an Object-Aware Knowledge Extraction (OAKE) module and a Distillation Pyramid (DP) mechanism. When extracting object knowledge from PVLMs, the former adaptively transforms object proposals and adopts object-aware mask attention to obtain precise and complete knowledge of objects. The latter introduces global and block distillation for more comprehensive knowledge transfer to compensate for the missing relation information in object distillation. Extensive experiments show that our method achieves significant improvement compared to current methods. Especially on the MS-COCO dataset, our OADP framework reaches $35.6$ mAP$^{\text{N}}_{50}$, surpassing the current state-of-the-art method by $3.3$ mAP$^{\text{N}}_{50}$. Code is released at https://github.com/LutingWang/OADP.
PDF Abstract CVPR 2023 PDF CVPR 2023 AbstractCode
Task | Dataset | Model | Metric Name | Metric Value | Global Rank | Benchmark |
---|---|---|---|---|---|---|
Open Vocabulary Object Detection | LVIS v1.0 | OADP | AP novel-LVIS base training | 21.7 | # 19 | |
Open Vocabulary Object Detection | MSCOCO | OADP (G-OVD) | AP 0.5 | 35.6 | # 16 | |
Open Vocabulary Object Detection | MSCOCO | OADP | AP 0.5 | 30.0 | # 21 |