Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series Forecasting Approach

4 Dec 2023  ·  Jinguo Cheng, Ke Li, Yuxuan Liang, Lijun Sun, Junchi Yan, Yuankai Wu ·

Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services. Conventionally, urban mobility data has been structured as spatiotemporal videos, treating longitude and latitude grids as fundamental pixels. Consequently, video prediction methods, relying on Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have been instrumental in this domain. In our research, we introduce a fresh perspective on urban mobility prediction. Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex multivariate time series. This perspective involves treating the time-varying values of each grid in each channel as individual time series, necessitating a thorough examination of temporal dynamics, cross-variable correlations, and frequency-domain insights for precise and reliable predictions. To address this challenge, we present the Super-Multivariate Urban Mobility Transformer (SUMformer), which utilizes a specially designed attention mechanism to calculate temporal and cross-variable correlations and reduce computational costs stemming from a large number of time series. SUMformer also employs low-frequency filters to extract essential information for long-term predictions. Furthermore, SUMformer is structured with a temporal patch merge mechanism, forming a hierarchical framework that enables the capture of multi-scale correlations. Consequently, it excels in urban mobility pattern modeling and long-term prediction, outperforming current state-of-the-art methods across three real-world datasets.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods