Robust Core-Periphery Constrained Transformer for Domain Adaptation

25 Aug 2023  ·  Xiaowei Yu, Dajiang Zhu, Tianming Liu ·

Unsupervised domain adaptation (UDA) aims to learn transferable representation across domains. Recently a few UDA works have successfully applied Transformer-based methods and achieved state-of-the-art (SOTA) results. However, it remains challenging when there exists a large domain gap between the source and target domain. Inspired by humans' exceptional transferability abilities to adapt knowledge from familiar to uncharted domains, we try to apply the universally existing organizational structure in the human functional brain networks, i.e., the core-periphery principle to design the Transformer and improve its UDA performance. In this paper, we propose a novel brain-inspired robust core-periphery constrained transformer (RCCT) for unsupervised domain adaptation, which brings a large margin of performance improvement on various datasets. Specifically, in RCCT, the self-attention operation across image patches is rescheduled by an adaptively learned weighted graph with the Core-Periphery structure (CP graph), where the information communication and exchange between images patches are manipulated and controlled by the connection strength, i.e., edge weight of the learned weighted CP graph. Besides, since the data in domain adaptation tasks can be noisy, to improve the model robustness, we intentionally add perturbations to the patches in the latent space to ensure generating robust learned weighted core-periphery graphs. Extensive evaluations are conducted on several widely tested UDA benchmarks. Our proposed RCCT consistently performs best compared to existing works, including 88.3\% on Office-Home, 95.0\% on Office-31, 90.7\% on VisDA-2017, and 46.0\% on DomainNet.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods