HuggingFace's Transformers: State-of-the-art Natural Language Processing

Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks... (read more)

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Residual Connection
Skip Connections
BPE
Subword Segmentation
Dense Connections
Feedforward Networks
Label Smoothing
Regularization
ReLU
Activation Functions
Adam
Stochastic Optimization
Softmax
Output Functions
Dropout
Regularization
Multi-Head Attention
Attention Modules
Layer Normalization
Normalization
Scaled Dot-Product Attention
Attention Mechanisms
Transformer
Transformers