Virtual Node Tuning for Few-shot Node Classification

9 Jun 2023  ·  Zhen Tan, Ruocheng Guo, Kaize Ding, Huan Liu ·

Few-shot Node Classification (FSNC) is a challenge in graph representation learning where only a few labeled nodes per class are available for training. To tackle this issue, meta-learning has been proposed to transfer structural knowledge from base classes with abundant labels to target novel classes. However, existing solutions become ineffective or inapplicable when base classes have no or limited labeled nodes. To address this challenge, we propose an innovative method dubbed Virtual Node Tuning (VNT). Our approach utilizes a pretrained graph transformer as the encoder and injects virtual nodes as soft prompts in the embedding space, which can be optimized with few-shot labels in novel classes to modulate node embeddings for each specific FSNC task. A unique feature of VNT is that, by incorporating a Graph-based Pseudo Prompt Evolution (GPPE) module, VNT-GPPE can handle scenarios with sparse labels in base classes. Experimental results on four datasets demonstrate the superiority of the proposed approach in addressing FSNC with unlabeled or sparsely labeled base classes, outperforming existing state-of-the-art methods and even fully supervised baselines.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods