Search Results for author: Joshua Maynez

Found 21 papers, 6 papers with code

A Thorough Evaluation of Task-Specific Pretraining for Summarization

no code implementations EMNLP 2021 Sascha Rothe, Joshua Maynez, Shashi Narayan

Task-agnostic pretraining objectives like masked language models or corrupted span prediction are applicable to a wide range of NLP downstream tasks (Raffel et al., 2019), but are outperformed by task-specific pretraining objectives like predicting extracted gap sentences on summarization (Zhang et al., 2020).

$μ$PLAN: Summarizing using a Content Plan as Cross-Lingual Bridge

no code implementations23 May 2023 Fantine Huot, Joshua Maynez, Chris Alberti, Reinald Kim Amplayo, Priyanka Agrawal, Constanza Fierro, Shashi Narayan, Mirella Lapata

Cross-lingual summarization consists of generating a summary in one language given an input document in a different language, allowing for the dissemination of relevant content across speakers of other languages.

PaLM 2 Technical Report

no code implementations17 May 2023 Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, Yaguang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, ZiRui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, Yonghui Wu

Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM.

Language Modelling

Text-Blueprint: An Interactive Platform for Plan-based Conditional Generation

no code implementations28 Apr 2023 Fantine Huot, Joshua Maynez, Shashi Narayan, Reinald Kim Amplayo, Kuzman Ganchev, Annie Louis, Anders Sandholm, Dipanjan Das, Mirella Lapata

While conditional generation models can now generate natural language well enough to create fluent text, it is still difficult to control the generation process, leading to irrelevant, repetitive, and hallucinated content.

Text Generation

On Uncertainty Calibration and Selective Generation in Probabilistic Neural Summarization: A Benchmark Study

no code implementations17 Apr 2023 Polina Zablotskaia, Du Phan, Joshua Maynez, Shashi Narayan, Jie Ren, Jeremiah Liu

Modern deep models for summarization attains impressive benchmark performance, but they are prone to generating miscalibrated predictive uncertainty.

Probabilistic Deep Learning

Little Red Riding Hood Goes Around the Globe:Crosslingual Story Planning and Generation with Large Language Models

no code implementations20 Dec 2022 Evgeniia Razumovskaia, Joshua Maynez, Annie Louis, Mirella Lapata, Shashi Narayan

Previous work has demonstrated the effectiveness of planning for story generation exclusively in a monolingual setting focusing primarily on English.

Story Generation

mFACE: Multilingual Summarization with Factual Consistency Evaluation

no code implementations20 Dec 2022 Roee Aharoni, Shashi Narayan, Joshua Maynez, Jonathan Herzig, Elizabeth Clark, Mirella Lapata

Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets.

Abstractive Text Summarization

QAmeleon: Multilingual QA with Only 5 Examples

no code implementations15 Nov 2022 Priyanka Agrawal, Chris Alberti, Fantine Huot, Joshua Maynez, Ji Ma, Sebastian Ruder, Kuzman Ganchev, Dipanjan Das, Mirella Lapata

The availability of large, high-quality datasets has been one of the main drivers of recent progress in question answering (QA).

Few-Shot Learning Question Answering

Conditional Generation with a Question-Answering Blueprint

1 code implementation1 Jul 2022 Shashi Narayan, Joshua Maynez, Reinald Kim Amplayo, Kuzman Ganchev, Annie Louis, Fantine Huot, Anders Sandholm, Dipanjan Das, Mirella Lapata

The ability to convey relevant and faithful information is critical for many tasks in conditional generation and yet remains elusive for neural seq-to-seq models whose outputs often reveal hallucinations and fail to correctly cover important details.

Question Answering Question Generation +1

GEMv2: Multilingual NLG Benchmarking in a Single Line of Code

no code implementations22 Jun 2022 Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya Mahendiran, Alex Wang, Alexandros Papangelis, Aman Madaan, Angelina McMillan-Major, Anna Shvets, Ashish Upadhyay, Bingsheng Yao, Bryan Wilie, Chandra Bhagavatula, Chaobin You, Craig Thomson, Cristina Garbacea, Dakuo Wang, Daniel Deutsch, Deyi Xiong, Di Jin, Dimitra Gkatzia, Dragomir Radev, Elizabeth Clark, Esin Durmus, Faisal Ladhak, Filip Ginter, Genta Indra Winata, Hendrik Strobelt, Hiroaki Hayashi, Jekaterina Novikova, Jenna Kanerva, Jenny Chim, Jiawei Zhou, Jordan Clive, Joshua Maynez, João Sedoc, Juraj Juraska, Kaustubh Dhole, Khyathi Raghavi Chandu, Laura Perez-Beltrachini, Leonardo F. R. Ribeiro, Lewis Tunstall, Li Zhang, Mahima Pushkarna, Mathias Creutz, Michael White, Mihir Sanjay Kale, Moussa Kamal Eddine, Nico Daheim, Nishant Subramani, Ondrej Dusek, Paul Pu Liang, Pawan Sasanka Ammanamanchi, Qi Zhu, Ratish Puduppully, Reno Kriz, Rifat Shahriyar, Ronald Cardenas, Saad Mahamood, Salomey Osei, Samuel Cahyawijaya, Sanja Štajner, Sebastien Montella, Shailza, Shailza Jolly, Simon Mille, Tahmid Hasan, Tianhao Shen, Tosin Adewumi, Vikas Raunak, Vipul Raheja, Vitaly Nikolaev, Vivian Tsai, Yacine Jernite, Ying Xu, Yisi Sang, Yixin Liu, Yufang Hou

This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims.

Benchmarking Text Generation

A Well-Composed Text is Half Done! Composition Sampling for Diverse Conditional Generation

1 code implementation ACL 2022 Shashi Narayan, Gonçalo Simões, Yao Zhao, Joshua Maynez, Dipanjan Das, Michael Collins, Mirella Lapata

We propose Composition Sampling, a simple but effective method to generate diverse outputs for conditional generation of higher quality compared to previous stochastic decoding strategies.

Question Generation Question-Generation

Shatter: An Efficient Transformer Encoder with Single-Headed Self-Attention and Relative Sequence Partitioning

no code implementations30 Aug 2021 Ran Tian, Joshua Maynez, Ankur P. Parikh

The highly popular Transformer architecture, based on self-attention, is the foundation of large pretrained models such as BERT, that have become an enduring paradigm in NLP.

Planning with Learned Entity Prompts for Abstractive Summarization

no code implementations15 Apr 2021 Shashi Narayan, Yao Zhao, Joshua Maynez, Gonçalo Simoes, Vitaly Nikolaev, Ryan Mcdonald

Moreover, we demonstrate empirically that planning with entity chains provides a mechanism to control hallucinations in abstractive summaries.

Abstractive Text Summarization Specificity +1

On Faithfulness and Factuality in Abstractive Summarization

2 code implementations ACL 2020 Joshua Maynez, Shashi Narayan, Bernd Bohnet, Ryan Mcdonald

It is well known that the standard likelihood training and approximate decoding objectives in neural text generation models lead to less human-like responses for open-ended tasks such as language modeling and story generation.

Abstractive Text Summarization Document Summarization +3

Cannot find the paper you are looking for? You can Submit a new open access paper.