no code implementations • EMNLP 2021 • Pierre Colombo, Emile Chapuis, Matthieu Labeau, Chloé Clavel
Spoken dialogue systems need to be able to handle both multiple languages and multilinguality inside a conversation (e. g in case of code-switching).
no code implementations • 17 May 2023 • Anas Himmi, Ekhine Irurozki, Nathan Noiry, Stephan Clemencon, Pierre Colombo
This paper formalize an existing problem in NLP research: benchmarking when some systems scores are missing on the task, and proposes a novel approach to address it.
1 code implementation • 28 Mar 2023 • Nuno M. Guerreiro, Duarte Alves, Jonas Waldendorf, Barry Haddow, Alexandra Birch, Pierre Colombo, André F. T. Martins
Large-scale multilingual machine translation systems have demonstrated remarkable ability to translate directly between numerous languages, making them increasingly appealing for real-world applications.
no code implementations • 7 Mar 2023 • Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral, Teven Le Scao, Leandro von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen, Jörg Frohberg, Mario Šaško, Quentin Lhoest, Angelina McMillan-Major, Gerard Dupont, Stella Biderman, Anna Rogers, Loubna Ben allal, Francesco De Toni, Giada Pistilli, Olivier Nguyen, Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier de la Rosa, Paulo Villegas, Tristan Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber, Manuel Muñoz, Jian Zhu, Daniel van Strien, Zaid Alyafeai, Khalid Almubarak, Minh Chien Vu, Itziar Gonzalez-Dios, Aitor Soroa, Kyle Lo, Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Adelani, Long Phan, Hieu Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret Mitchell, Sasha Alexandra Luccioni, Yacine Jernite
As language models grow ever larger, the need for large-scale high-quality text datasets has never been more pressing, especially in multilingual settings.
no code implementations • 20 Feb 2023 • Maxime Darrin, Guillaume Staerman, Eduardo Dadalto Câmara Gomes, Jackie CK Cheung, Pablo Piantanida, Pierre Colombo
More importantly, we show that the usual choice (the last layer) is rarely the best one for OOD detection and that far better results could be achieved if the best layer were picked.
1 code implementation • 19 Dec 2022 • Nuno M. Guerreiro, Pierre Colombo, Pablo Piantanida, André F. T. Martins
Neural machine translation (NMT) has become the de-facto standard in real-world machine translation applications.
no code implementations • 18 Dec 2022 • Maxime Darrin, Pablo Piantanida, Pierre Colombo
As more and more conversational and translation systems are deployed in production, it is essential to implement and to develop effective control mechanisms guaranteeing their proper functioning and security.
no code implementations • 24 Nov 2022 • Pierre Colombo, Eduardo D. C. Gomes, Guillaume Staerman, Nathan Noiry, Pablo Piantanida
Deep learning methods have boosted the adoption of NLP systems in real-life applications.
2 code implementations • 9 Nov 2022 • BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions.
no code implementations • 31 Aug 2022 • Pierre Colombo, Maxime Peyrard, Nathan Noiry, Robert West, Pablo Piantanida
Automatic evaluation metrics capable of replacing human judgments are critical to allowing fast development of new methods.
2 code implementations • COLING 2022 • Cyril Chhun, Pierre Colombo, Chloé Clavel, Fabian M. Suchanek
However, there is no consensus on which human evaluation criteria to use, and no analysis of how well automatic criteria correlate with them.
no code implementations • ACL 2022 • Pierre Colombo, Guillaume Staerman, Nathan Noiry, Pablo Piantanida
When working with textual data, a natural application of disentangled representations is fair classification where the goal is to make predictions without being biased (or influenced) by sensitive attributes that may be present in the data (e. g., age, gender or race).
1 code implementation • 14 Feb 2022 • Georg Pichler, Pierre Colombo, Malik Boudiaf, Günther Koliander, Pablo Piantanida
Mutual Information (MI) has been widely used as a loss regularizer for training neural networks.
1 code implementation • 8 Feb 2022 • Pierre Colombo, Nathan Noiry, Ekhine Irurozki, Stephan Clemencon
In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances.
2 code implementations • 6 Dec 2021 • Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Shrivastava, Samson Tan, Tongshuang Wu, Jascha Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, Ondrej Dusek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Tanya Goyal, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicolas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos P. H. S., Ananya B. Sai, Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen, Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, KV Aditya Srivatsa, Tony Sun, Mukund Varma T, A Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Gloria Wang, Zijie J. Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyi Wu, Witold Wydmański, Tianbao Xie, Usama Yaseen, Michael A. Yee, Jing Zhang, Yue Zhang
Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on.
1 code implementation • 2 Dec 2021 • Pierre Colombo, Chloe Clavel, Pablo Piantanida
In this paper, we introduce InfoLM a family of untrained metrics that can be viewed as a string-based metric that addresses the aforementioned flaws thanks to a pre-trained masked language model.
no code implementations • ICNLSP 2021 • Pierre Colombo, Chouchang Yang, Giovanna Varni, Chloé Clavel
Sequence-to-sequence neural networks have been widely used in language-based applications as they have flexible capabilities to learn various language models.
no code implementations • EMNLP 2021 • Pierre Colombo, Emile Chapuis, Matthieu Labeau, Chloe Clavel
We demonstrate that our new penalties lead to a consistent improvement (up to $4. 3$ on accuracy) across a large variety of state-of-the-art models on two well-known sentiment analysis datasets: \texttt{CMU-MOSI} and \texttt{CMU-MOSEI}.
2 code implementations • EMNLP 2021 • Pierre Colombo, Guillaume Staerman, Chloe Clavel, Pablo Piantanida
A new metric \texttt{BaryScore} to evaluate text generation based on deep contextualized embeddings e. g., BERT, Roberta, ELMo) is introduced.
no code implementations • 27 Aug 2021 • Emile Chapuis, Pierre Colombo, Matthieu Labeau, Chloe Clavel
Spoken dialog systems need to be able to handle both multiple languages and multilinguality inside a conversation (\textit{e. g} in case of code-switching).
no code implementations • ACL 2021 • Pierre Colombo, Chloe Clavel, Pablo Piantanida
We show the superiority of this method on fair classification and on textual style transfer tasks.
Ranked #1 on
Text Style Transfer
on Yelp Review Dataset (Large)
(BLEU metric)
1 code implementation • 23 Mar 2021 • Guillaume Staerman, Pavlo Mozharovskyi, Pierre Colombo, Stéphan Clémençon, Florence d'Alché-Buc
a probability distribution or a data set.
no code implementations • 1 Jan 2021 • Pierre Colombo, Chloé Clavel, Pablo Piantanida
Learning disentangled representations of textual data is essential for many natural language tasks such as fair classification (\textit{e. g.} building classifiers whose decisions cannot disproportionately hurt or benefit specific groups identified by sensitive attributes), style transfer and sentence generation, among others.
no code implementations • EMNLP 2020 • Tanvi Dinkar, Pierre Colombo, Matthieu Labeau, Chloé Clavel
While being an essential component of spoken language, fillers (e. g."um" or "uh") often remain overlooked in Spoken Language Understanding (SLU) tasks.
no code implementations • Findings of the Association for Computational Linguistics 2020 • Emile Chapuis, Pierre Colombo, Matteo Manica, Matthieu Labeau, Chloe Clavel
We obtain our representations with a hierarchical encoder based on transformer architectures, for which we extend two well-known pre-training objectives.
Ranked #1 on
Text Classification
on SILICONE Benchmark
Dialogue Act Classification
Emotion Recognition in Conversation
+1
no code implementations • NeurIPS 2020 • Hamid Jalalzai, Pierre Colombo, Chloé Clavel, Eric Gaussier, Giovanna Varni, Emmanuel Vignon, Anne Sabourin
The dominant approaches to text representation in natural language rely on learning embeddings on massive corpora which have convenient properties such as compositionality and distance preservation.
Ranked #3 on
Sentiment Analysis
on Yelp Binary classification
no code implementations • 21 Feb 2020 • Pierre Colombo, Emile Chapuis, Matteo Manica, Emmanuel Vignon, Giovanna Varni, Chloe Clavel
The task of predicting dialog acts (DA) based on conversational dialog is a key component in the development of conversational agents.
no code implementations • 20 Feb 2020 • Pierre Colombo, Emile Chapuis, Matteo Manica, Emmanuel Vignon, Giovanna Varni, Chloe Clavel
The task of predicting dialog acts (DA) based on conversational dialog is a key component in the development of conversational agents.
Ranked #1 on
Dialogue Act Classification
on Switchboard corpus
no code implementations • 25 Sep 2019 • Hamid Jalalzai, Pierre Colombo, Chloé Clavel, Eric Gaussier, Giovanna Varni, Emmanuel Vignon, Anne Sabourin
The dominant approaches to sentence representation in natural language rely on learning embeddings on massive corpuses.
no code implementations • IJCNLP 2019 • Alexandre Garcia, Pierre Colombo, Slim Essid, Florence d'Alché-Buc, Chloé Clavel
The task of predicting fine grained user opinion based on spontaneous spoken language is a key problem arising in the development of Computational Agents as well as in the development of social network based opinion miners.
no code implementations • NAACL 2019 • Pierre Colombo, Wojciech Witon, Ashutosh Modi, James Kennedy, Mubbasir Kapadia
The majority of current systems for end-to-end dialog generation focus on response quality without an explicit control over the affective content of the responses.
no code implementations • WS 2018 • Wojciech Witon, Pierre Colombo, Ashutosh Modi, Mubbasir Kapadia
This paper describes our participating system in the WASSA 2018 shared task on emotion prediction.