Search Results for author: Prasanna Parvathaneni

Found 8 papers, 2 papers with code

Deep Learning Captures More Accurate Diffusion Fiber Orientations Distributions than Constrained Spherical Deconvolution

no code implementations13 Nov 2019 Vishwesh Nath, Kurt G. Schilling, Colin B. Hansen, Prasanna Parvathaneni, Allison E. Hainline, Camilo Bermudez, Andrew J. Plassard, Vaibhav Janve, Yurui Gao, Justin A. Blaber, Iwona Stępniewska, Adam W. Anderson, Bennett A. Landman

Confocal histology provides an opportunity to establish intra-voxel fiber orientation distributions that can be used to quantitatively assess the biological relevance of diffusion weighted MRI models, e. g., constrained spherical deconvolution (CSD).

3D Whole Brain Segmentation using Spatially Localized Atlas Network Tiles

2 code implementations28 Mar 2019 Yuankai Huo, Zhoubing Xu, Yunxi Xiong, Katherine Aboud, Prasanna Parvathaneni, Shunxing Bao, Camilo Bermudez, Susan M. Resnick, Laurie E. Cutting, Bennett A. Landman

To address the first challenge, multiple spatially distributed networks were used in the SLANT method, in which each network learned contextual information for a fixed spatial location.

Brain Segmentation Segmentation

Splenomegaly Segmentation on Multi-modal MRI using Deep Convolutional Networks

no code implementations9 Nov 2018 Yuankai Huo, Zhoubing Xu, Shunxing Bao, Camilo Bermudez, Hyeonsoo Moon, Prasanna Parvathaneni, Tamara K. Moyo, Michael R. Savona, Albert Assad, Richard G. Abramson, Bennett A. Landman

A clinically acquired cohort containing both T1-weighted (T1w) and T2-weighted (T2w) MRI splenomegaly scans was used to train and evaluate the performance of multi-atlas segmentation (MAS), 2D DCNN networks, and a 3D DCNN network.

Segmentation Splenomegaly Segmentation On Multi-Modal Mri

Improved Stability of Whole Brain Surface Parcellation with Multi-Atlas Segmentation

no code implementations2 Dec 2017 Yuankai Huo, Shunxing Bao, Prasanna Parvathaneni, Bennett A. Landman

Herein, the MaCRUISE surface parcellation (MaCRUISEsp) method is proposed to perform the surface parcellation upon the inner, central and outer surfaces that are reconstructed from MaCRUISE.

Brain Segmentation Segmentation +1

Cannot find the paper you are looking for? You can Submit a new open access paper.