A Good Prompt Is Worth Millions of Parameters: Low-resource Prompt-based Learning for Vision-Language Models
Large pre-trained vision-language (VL) models can learn a new task with a handful of examples and generalize to a new task without fine-tuning. However, these VL models are hard to deploy for real-world applications due to their impractically huge sizes and slow inference speed. To solve this limitation, we study prompt-based low-resource learning of VL tasks with our proposed method, FewVLM, relatively smaller than recent few-shot learners. For FewVLM, we pre-train a sequence-to-sequence transformer model with prefix language modeling (PrefixLM) and masked language modeling (MaskedLM). Furthermore, we analyze the effect of diverse prompts for few-shot tasks. Experimental results on VQA show that FewVLM with prompt-based learning outperforms Frozen which is 31x larger than FewVLM by 18.2% point and achieves comparable results to a 246x larger model, PICa. In our analysis, we observe that (1) prompts significantly affect zero-shot performance but marginally affect few-shot performance, (2) models with noisy prompts learn as quickly as hand-crafted prompts given larger training data, and (3) MaskedLM helps VQA tasks while PrefixLM boosts captioning performance. Our code is publicly available at \url{https://github.com/woojeongjin/FewVLM}
PDF Abstract ACL 2022 PDF ACL 2022 AbstractCode
Results from the Paper
Ranked #4 on Image Captioning on Flickr30k Captions test (SPICE metric)