HARDVS: Revisiting Human Activity Recognition with Dynamic Vision Sensors

17 Nov 2022  ·  Xiao Wang, Zongzhen Wu, Bo Jiang, Zhimin Bao, Lin Zhu, Guoqi Li, YaoWei Wang, Yonghong Tian ·

The main streams of human activity recognition (HAR) algorithms are developed based on RGB cameras which are suffered from illumination, fast motion, privacy-preserving, and large energy consumption. Meanwhile, the biologically inspired event cameras attracted great interest due to their unique features, such as high dynamic range, dense temporal but sparse spatial resolution, low latency, low power, etc. As it is a newly arising sensor, even there is no realistic large-scale dataset for HAR. Considering its great practical value, in this paper, we propose a large-scale benchmark dataset to bridge this gap, termed HARDVS, which contains 300 categories and more than 100K event sequences. We evaluate and report the performance of multiple popular HAR algorithms, which provide extensive baselines for future works to compare. More importantly, we propose a novel spatial-temporal feature learning and fusion framework, termed ESTF, for event stream based human activity recognition. It first projects the event streams into spatial and temporal embeddings using StemNet, then, encodes and fuses the dual-view representations using Transformer networks. Finally, the dual features are concatenated and fed into a classification head for activity prediction. Extensive experiments on multiple datasets fully validated the effectiveness of our model. Both the dataset and source code will be released on \url{https://github.com/Event-AHU/HARDVS}.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods