Model-Based Underwater 6D Pose Estimation from RGB

Object pose estimation underwater allows an autonomous system to perform tracking and intervention tasks. Nonetheless, underwater target pose estimation is remarkably challenging due to, among many factors, limited visibility, light scattering, cluttered environments, and constantly varying water conditions. An approach is to employ sonar or laser sensing to acquire 3D data, however, the data is not clear and the sensors expensive. For this reason, the community has focused on extracting pose estimates from RGB input. In this work, we propose an approach that leverages 2D object detection to reliably compute 6D pose estimates in different underwater scenarios. We test our proposal with 4 objects with symmetrical shapes and poor texture spanning across 33,920 synthetic and 10 real scenes. All objects and scenes are made available in an open-source dataset that includes annotations for object detection and pose estimation. When benchmarking against similar end-to-end methodologies for 6D object pose estimation, our pipeline provides estimates that are 8% more accurate. We also demonstrate the real world usability of our pose estimation pipeline on an underwater robotic manipulator in a reaching task.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods