Pretraining Techniques for Sequence-to-Sequence Voice Conversion

7 Aug 2020  ·  Wen-Chin Huang, Tomoki Hayashi, Yi-Chiao Wu, Hirokazu Kameoka, Tomoki Toda ·

Sequence-to-sequence (seq2seq) voice conversion (VC) models are attractive owing to their ability to convert prosody. Nonetheless, without sufficient data, seq2seq VC models can suffer from unstable training and mispronunciation problems in the converted speech, thus far from practical. To tackle these shortcomings, we propose to transfer knowledge from other speech processing tasks where large-scale corpora are easily available, typically text-to-speech (TTS) and automatic speech recognition (ASR). We argue that VC models initialized with such pretrained ASR or TTS model parameters can generate effective hidden representations for high-fidelity, highly intelligible converted speech. We apply such techniques to recurrent neural network (RNN)-based and Transformer based models, and through systematical experiments, we demonstrate the effectiveness of the pretraining scheme and the superiority of Transformer based models over RNN-based models in terms of intelligibility, naturalness, and similarity.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.