Semantic Segmentation on VSPW Dataset through Aggregation of Transformer Models

3 Sep 2021  ·  Zixuan Chen, Junhong Zou, Xiaotao Wang ·

Semantic segmentation is an important task in computer vision, from which some important usage scenarios are derived, such as autonomous driving, scene parsing, etc. Due to the emphasis on the task of video semantic segmentation, we participated in this competition. In this report, we briefly introduce the solutions of team 'BetterThing' for the ICCV2021 - Video Scene Parsing in the Wild Challenge. Transformer is used as the backbone for extracting video frame features, and the final result is the aggregation of the output of two Transformer models, SWIN and VOLO. This solution achieves 57.3% mIoU, which is ranked 3rd place in the Video Scene Parsing in the Wild Challenge.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.